687 research outputs found

    Development of an acoustic communication link for micro underwater vehicles

    Get PDF
    PhD ThesisIn recent years there has been an increasing trend towards the use of Micro Remotely Operated Vehicles (μROVs), such as the Videoray and Seabotix LBV products, for a range of subsea applications, including environmental monitoring, harbour security, military surveillance and offshore inspection. A major operational limitation is the umbilical cable, which is traditionally used to supply power and communications to the vehicle. This tether has often been found to significantly restrict the agility of the vehicle or in extreme cases, result in entanglement with subsea structures. This thesis addresses the challenges associated with developing a reliable full-duplex wireless communications link aimed at tetherless operation of a μROV. Previous research has demonstrated the ability to support highly compressed video transmissions over several kilometres through shallow water channels with large range-depth ratios. However, the physical constraints of these platforms paired with the system cost requirements pose significant additional challenges. Firstly, the physical size/weight of transducers for the LF (8-16kHz) and MF (16-32kHz) bands would significantly affect the dynamics of the vehicle measuring less than 0.5m long. Therefore, this thesis explores the challenges associated with moving the operating frequency up to around 50kHz centre, along with the opportunities for increased data rate and tracking due to higher bandwidth. The typical operating radius of μROVs is less than 200m, in water < 100m deep, which gives rise to multipath channels characterised by long timespread and relatively sparse arrivals. Hence, the system must be optimised for performance in these conditions. The hardware costs of large multi-element receiver arrays are prohibitive when compared to the cost of the μROV platform. Additionally, the physical size of such arrays complicates deployment from small surface vessels. Although some recent developments in iterative equalisation and decoding structures have enhanced the performance of single element receivers, they are not found to be adequate in such channels. This work explores the optimum cost/performance trade-off in a combination of a micro beamforming array using a Bit Interleaved Coded Modulation with Iterative Decoding (BICM-ID) receiver structure. The highly dynamic nature of μROVs, with rapid acceleration/deceleration and complex thruster/wake effects, are also a significant challenge to reliable continuous communications. The thesis also explores how these effects can best be mitigated via advanced Doppler correction techniques, and adaptive coding and modulation via a simultaneous frequency multiplexed down link. In order to fully explore continuous adaptation of the transmitted signals, a real-time full-duplex communication system was constructed in hardware, utilising low cost components and a highly optimised PC based receiver structure. Rigorous testing, both in laboratory conditions and through extensive field trials, have enabled the author to explore the performance of the communication link on a vehicle carrying out typical operations and presenting a wide range of channel, noise, Doppler and transmission latency conditions. This has led to a comprehensive set of design recommendations for a reliable and cost effective link capable of continuous throughputs of >30 kbits/s

    USV charging based on WPT system

    Get PDF
    With the increasing demand of water and underwater exploration, more and more electric unmanned surface vehicles (USV) are put into use in recent years. However, because of the present battery technology limits, these devices require to be recharged frequently that is a challenging problem taking into account the complex water environment where these equipments are acting. To improve safety and convenience of USV charging a wireless power transfer (WPT) system is proposed in this dissertation. In this case, the boat can be controlled to go to the charging facilities. During charging by the implemented WPT system, the state of charging can be remotely monitored by host computer. The moving control is based on embedded system. The relative position between transmitting coil and receiving coil is supposed to be sensed by magnetic sensor, since the relative position has great impact on transmission efficiency. The remote monitoring software was implemented in the host computer and was developed in LABVIEW. A graphical user interface was developed to control the boat moving and collect the data from the WPT and the boat sensors. The effectiveness of the proposed system was tested for instance in the laboratory environment and in-field tests are also planned in the near future.Com a crescente procura da exploração em ambientes aquáticos e subaquáticos , os veículos elétricos de superfície não tripulados ("electric unmanned surface vehicle" -USV) têm sido cada vez mais utilizados nestes últimos anos. No entanto, devido aos limites atuais relacionados com a tecnologia utilizada nas baterias, os dispositivos precisam de ser recarregados com frequência para poderem operar num ambiente aquático complexo. Para melhorar a segurança e a conveniência do carregamento da bateria de um USV, um sistema para recarregamento da bateria de um barco não tripulado através de transferência de energia sem fios("wireless power transfer" - WPT) é proposto nesta dissertação. Neste caso de estudo, o barco tem a capacidade de ser controlado para chegar a um ponto de recarregamento da bateria, que se encontra fixado por uma doca mecânica. Enquanto o sistema WPT érecarregado, os dados associados ao processo de recarregamento da bateria podem ser monitorizados por um computador host. O controlo da movimentação do barco é baseado num sistema embebido. A posição relativa entre a bobina transmissora e a bobina receptora deve ser detectada pelo sensor magnético, uma vez que a posição relativa tem um grande impacto na eficiência da transmissão. Em termos do computador host, foi utilizado o software LABVIEW para programar a interface que permite controlar o movimento do barco e recolher os dados. Finalmente, a eficácia do sistema proposto foi experimentada e testada num ambiente de laboratório

    Beyond the Waters' Edge: Complexity and Conservation Management of Underwater Cultural Heritage by Public Agencies in North Carolina

    Get PDF
    This study used a mixed methods case study approach to investigate the nature and behavior of the system in North Carolina within which managers in its public agency for Archives and History have implemented public policy to conserve the state's underwater cultural heritage since the early 1960s. The study provides a history of conservation management of underwater cultural heritage in North Carolina, methodologies, and a conceptual framework to help conservation managers identify and understand contexts within which they are working as either traditional or complex management systems. By organization theory, understanding context is recognized as crucial for effective management. When physical remains of the past are discovered in state waters it may be obvious to a professional conservator what actions are needed. Deciding what actions are taken, however, lies with public agency managers - beyond the waters' edge. Factors investigated for this study were players' (public, political, professional) interests, conservation actions, and time. Data was analyzed from the perspectives of three public policy systems models. Archives and History's management system generally was found to be traditional, but six case study sites were identified as complex adaptive systems

    Mobilizing the Past for a Digital Future : The Potential of Digital Archaeology

    Get PDF
    Mobilizing the Past is a collection of 20 articles that explore the use and impact of mobile digital technology in archaeological field practice. The detailed case studies present in this volume range from drones in the Andes to iPads at Pompeii, digital workflows in the American Southwest, and examples of how bespoke, DIY, and commercial software provide solutions and craft novel challenges for field archaeologists. The range of projects and contexts ensures that Mobilizing the Past for a Digital Future is far more than a state-of-the-field manual or technical handbook. Instead, the contributors embrace the growing spirit of critique present in digital archaeology. This critical edge, backed by real projects, systems, and experiences, gives the book lasting value as both a glimpse into present practices as well as the anxieties and enthusiasm associated with the most recent generation of mobile digital tools. This book emerged from a workshop funded by the National Endowment for the Humanities held in 2015 at Wentworth Institute of Technology in Boston. The workshop brought together over 20 leading practitioners of digital archaeology in the U.S. for a weekend of conversation. The papers in this volume reflect the discussions at this workshop with significant additional content. Starting with an expansive introduction and concluding with a series of reflective papers, this volume illustrates how tablets, connectivity, sophisticated software, and powerful computers have transformed field practices and offer potential for a radically transformed discipline.https://dc.uwm.edu/arthist_mobilizingthepast/1000/thumbnail.jp

    An Internet of Things (IoT) based wide-area Wireless Sensor Network (WSN) platform with mobility support.

    Get PDF
    Wide-area remote monitoring applications use cellular networks or satellite links to transfer sensor data to the central storage. Remote monitoring applications uses Wireless Sensor Networks (WSNs) to accommodate more Sensor Nodes (SNs) and for better management. Internet of Things (IoT) network connects the WSN with the data storage and other application specific services using the existing internet infrastructure. Both cellular networks, such as the Narrow-Band IoT (NB-IoT), and satellite links will not be suitable for point-to-point connections of the SNs due to their lack of coverage, high cost, and energy requirement. Low Power Wireless Area Network (LPWAN) is used to interconnect all the SNs and accumulate the data to a single point, called Gateway, before sending it to the IoT network. WSN implements clustering of the SNs to increase the network coverage and utilizes multiple wireless links between the repeater nodes (called hops) to reach the gateway at a longer distance. Clustered WSN can cover up to a few km using the LPWAN technologies such as Zigbee using multiple hops. Each Zigbee link can be from 200 m to 500 m long. Other LPWAN technologies, such as LoRa, can facilitate an extended range from 1km to 15km. However, the LoRa will not be suitable for the clustered WSN due to its long Time on Air (TOA) which will introduce data transmission delay and become severe with the increase of hop count. Besides, a sensor node will need to increase the antenna height to achieve the long-range benefit of Lora using a single link (hop) instead of using multiple hops to cover the same range. With the increased WSN coverage area, remote monitoring applications such as smart farming may require mobile sensor nodes. This research focuses on the challenges to overcome LoRa’s limitations (long TOA and antenna height) and accommodation of mobility in a high-density and wide-area WSN for future remote monitoring applications. Hence, this research proposes lightweight communication protocols and networking algorithms using LoRa to achieve mobility, energy efficiency and wider coverage of up to a few hundred km for the WSN. This thesis is divided into four parts. It presents two data transmission protocols for LoRa to achieve a higher data rate and wider network coverage, one networking algorithm for wide-area WSN and a channel synchronization algorithm to improve the data rate of LoRa links. Part one presents a lightweight data transmission protocol for LoRa using a mobile data accumulator (called data sink) to increase the monitoring coverage area and data transmission energy efficiency. The proposed Lightweight Dynamic Auto Reconfigurable Protocol (LDAP) utilizes direct or single hop to transmit data from the SNs using one of them as the repeater node. Wide-area remote monitoring applications such as Water Quality Monitoring (WQM) can acquire data from geographically distributed water resources using LDAP, and a mobile Data Sink (DS) mounted on an Unmanned Aerial Vehicle (UAV). The proposed LDAP can acquire data from a minimum of 147 SNs covering 128 km in one direction reducing the DS requirement down to 5% comparing other WSNs using Zigbee for the same coverage area with static DS. Applications like smart farming and environmental monitoring may require mobile sensor nodes (SN) and data sinks (DS). The WSNs for these applications will require real-time network management algorithms and routing protocols for the dynamic WSN with mobility that is not feasible using static WSN technologies. This part proposes a lightweight clustering algorithm for the dynamic WSN (with mobility) utilizing the proposed LDAP to form clusters in real-time during the data accumulation by the mobile DS. The proposed Lightweight Dynamic Clustering Algorithm (LDCA) can form real-time clusters consisting of mobile or stationary SNs using mobile DS or static GW. WSN using LoRa and LDCA increases network capacity and coverage area reducing the required number of DS. It also reduces clustering energy to 33% and shows clustering efficiency of up to 98% for single-hop clustering covering 100 SNs. LoRa is not suitable for a clustered WSN with multiple hops due to its long TOA, depending on the LoRa link configurations (bandwidth and spreading factor). This research proposes a channel synchronization algorithm to improve the data rate of the LoRa link by combining multiple LoRa radio channels in a single logical channel. This increased data rate will enhance the capacity of the clusters in the WSN supporting faster clustering with mobile sensor nodes and data sink. Along with the LDCA, the proposed Lightweight Synchronization Algorithm for Quasi-orthogonal LoRa channels (LSAQ) facilitating multi-hop data transfer increases WSN capacity and coverage area. This research investigates quasi-orthogonality features of LoRa in terms of radio channel frequency, spreading factor (SF) and bandwidth. It derived mathematical models to obtain the optimal LoRa parameters for parallel data transmission using multiple SFs and developed a synchronization algorithm for LSAQ. The proposed LSAQ achieves up to a 46% improvement in network capacity and 58% in data rate compared with the WSN using the traditional LoRa Medium Access Control (MAC) layer protocols. Besides the high-density clustered WSN, remote monitoring applications like plant phenotyping may require transferring image or high-volume data using LoRa links. Wireless data transmission protocols used for high-volume data transmission using the link with a low data rate (like LoRa) requiring multiple packets create a significant amount of packet overload. Besides, the reliability of these data transmission protocols is highly dependent on acknowledgement (ACK) messages creating extra load on overall data transmission and hence reducing the application-specific effective data rate (goodput). This research proposes an application layer protocol to improve the goodput while transferring an image or sequential data over the LoRa links in the WSN. It uses dynamic acknowledgement (DACK) protocol for the LoRa physical layer to reduce the ACK message overhead. DACK uses end-of-transmission ACK messaging and transmits multiple packets as a block. It retransmits missing packets after receiving the ACK message at the end of multiple blocks. The goodput depends on the block size and the number of lossy packets that need to be retransmitted. It shows that the DACK LoRa can reduce the total ACK time 10 to 30 times comparing stop-wait protocol and ten times comparing multi-packet ACK protocol. The focused wide-area WSN and mobility requires different matrices to be evaluated. The performance evaluation matrices used for the static WSN do not consider the mobility and the related parameters, such as clustering efficiency in the network and hence cannot evaluate the performance of the proposed wide-area WSN platform supporting mobility. Therefore, new, and modified performance matrices are proposed to measure dynamic performance. It can measure the real-time clustering performance using the mobile data sink and sensor nodes, the cluster size, the coverage area of the WSN and more. All required hardware and software design, dimensioning, and performance evaluation models are also presented

    Pioneer Inventors, Sea Devils, and Infernal Machines: Submarine Development in the United States From the American Revolution Through the American Civil War

    Get PDF
    This thesis is a study of the history of early American submarine development, from the American Revolution through the American Civil War, with a brief discussion of what happened afterwards. Early American-made submarines are often not studied in detail with the exception of the most famous vessels like the H. L. Hunley and the Turtle. Few people realize just how many submarine projects were worked on in the eighteenth and nineteenth centuries, and many do not know anything about these submarines at all. This paper will cover the history of submarine development, the men behind them, what contemporaries thought of them, and ultimately what effect, if any, they had on American history. Because information on some of these submarines is scarce, some educated guesses and speculation will be used where necessary. The reasons for submarine development and what compelled people to develop submarines will also be discussed. In writing this paper, I hope to provide a better understanding of the long history of American submarines and encourage others to research these early submarines, perhaps making discoveries of their own

    The Book of Proceedings of the 1st International Scientific Conference of Aquatic Space Activities

    Get PDF
    Nomura T, Ungerechts B. The Book of Proceedings of the 1st International Scientific Conference of Aquatic Space Activities. Tsukuba JAP: University of Tsukuba; 2008
    • …
    corecore