647 research outputs found

    Exploring Travel Time Reliability Using Bluetooth Data Collection: A Case Study in San Luis Obispo, California

    Get PDF
    Bluetooth technology applications have improved travel time data collection efforts and allowed for collection of large data sets at a low cost per data unit. Mean travel times between pairs of points are available, but the primary value of this technique is the availability of the entire distribution of travel times throughout multiple days and time periods, allowing for a greater understanding of travel time variations and reliability. The use of these data for transportation planning, engineering and operations continues to expand. Previous applications of similar data sources have included travel demand and simulation model validation, work zone traffic patterns, transit ridership and reliability, pedestrian movement patterns, and before-after studies of transportation improvements. This thesis investigates the collection and analysis of Bluetooth-enabled travel time data along a multimodal arterial corridor in San Luis Obispo, California. Five BlueMAC devices collected multimodal travel time data in January and February 2016 along Los Osos Valley Road. These datasets were used to identify and process known sources of error such as occasions where vehicles using the roadway turn off and make an intermediate stop and multiple reads from the same vehicle; quantify travel time performance and reliability along arterial streets; and compare transit, bicycle, and pedestrian facility performance. Additionally, a travel time model was estimated based on segment characteristics and Bluetooth data to estimate average speeds and travel time distributions

    Detection of Pause in a Pedestrian’s Movement on a Linear Walkway using Bluetooth Low Energy Received Signal Strength Indicator

    Get PDF
    In recent years, Bluetooth Low Energy (BLE) has amassed significant attention in several applications. Its potential, however, remains largely unexplored for understanding pedestrian behaviour. This study focuses on investigating the potential of BLE in identifying pedestrian activity in an outdoor linear walkway. We specifically examine the likelihood of detecting pauses in the movement of pedestrians on a linear walkway using the strength of the signals obtained from a BLE device carried by the pedestrian. To accomplish this, a volunteer pedestrian intentionally pauses at selected points on the chosen walkway for varying predetermined intervals. The obtained data was conditioned using a polynomial curve to reduce the impact of anomalous data and was subsequently used to detect flatness in the trend of the signals to identify a pause. This flatness was identified using a sliding window standard deviation (SD) calculation over the curve obtained through polynomial fitting. Our results indicate a strong likelihood of detecting long pauses in a pedestrian’s journey

    16-02 Enhancing Non-motorized Mobility within Construction Zones

    Get PDF
    Acquisition of lanes and sidewalks for construction activities increases congestion and delays and compromises safety. Further, work zones impair access to local businesses, bus stops, nearby facilities, etc., while hindering mobility of pedestrians, cyclists, and emergency responders. The emphasis on non-motorized mobility varies significantly when temporary traffic control management plans are developed for small cities. Due to lack of specific instructions given to contractors and the potential liability issues, contractors tend to completely close access to non-motorized traffic without providing alternate routes or detours. Instead of using a detour, pedestrians and cyclists tend to pass through the construction zone or jaywalk which greatly increases the risk of accidents that could result in injuries and fatalities. National and international publications, manuals, policies and guidelines were reviewed, and a survey was conducted to synthesize best practices and the minimum requirements of street components. A work zone and mobility management framework, a list of possible alternatives for managing non-motorized mobility within and around a construction zone, and a risk-based decision-support framework for selecting the most viable alternative to manage non-motorized mobility during construction activities were developed. In addition, strategies to manage access to emergency responders, local businesses, commercial and residential buildings, and various other facilities are also presented. Innovative technologies, infrastructure, and construction methods that can be used to enhance safety and mobility are also documented

    A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring

    Get PDF
    Abstract This paper reviews low-cost vehicle and pedestrian detection methods and compares their accuracy. The main goal of this survey is to summarize the progress achieved to date and to help identify the sensing technologies that provide high detection accuracy and meet requirements related to cost and ease of installation. Special attention is paid to wireless battery-powered detectors of small dimensions that can be quickly and effortlessly installed alongside traffic lanes (on the side of a road or on a curb) without any additional supporting structures. The comparison of detection methods presented in this paper is based on results of experiments that were conducted with a variety of sensors in a wide range of configurations. During experiments various sensor sets were analyzed. It was shown that the detection accuracy can be significantly improved by fusing data from appropriately selected set of sensors. The experimental results reveal that accurate vehicle detection can be achieved by using sets of passive sensors. Application of active sensors was necessary to obtain satisfactory results in case of pedestrian detection

    Estimating Transit Ridership Patterns through Automated Data Collection Technology: A Case Study in San Luis Obispo, California

    Get PDF
    Public transportation offers a crucial solution to the travel demand in light of national and global economic, energy, and environmental challenges. If implemented effectively, public transit offers an affordable, convenient, and sustainable transportation mode. Implementation of new technologies for information-harvesting may lead to more effective transit operations. This study examines the potential of automated data collection technologies to analyzing and understand the origin-destination flow patterns, which is essential for transit route planning and stop location placement. This thesis investigates the collection and analysis of data of passengers onboard San Luis Obispo Transit buses in February and March 2017 using Bluetooth (BT) and automatic passenger counter (APC) data. Five BlueMAC detectors were placed on SLO Transit buses to collect Bluetooth data. APC data was obtained from San Luis Obispo Transit. The datasets were used to establish a data processing method to exclude invalid detections, to identify and process origin and destination trips of passengers, and to make conclusions regarding passenger behavior. The filtering methods were applied to the Bluetooth data to extract counts of unique passenger information and to compare the filtered data to the ground-truth APC data. The datasets were also used to study the San Luis Obispo Downtown Farmer’s Market and its impact on transit ridership demand. The investigation revealed that after carefully employing the filters on BT data there were no consistent patterns in differences between unique passenger counts obtained from APC data and the BT data. As a result, one should be careful in employing BT data for transit OD estimation. Not every passenger enables Bluetooth or owns a Bluetooth device, so relying on the possession of Bluetooth-enabled devices may not lead to a random sample, resulting in misleading travel patterns. Based on the APC data, it was revealed that transit ridership is 40% higher during the days during which Higuera Street in Downtown San Luis Obispo is used for Farmer’s Market – a classic example of tactical urbanism. Increase in transit ridership is one of the aspects of tactical urbanism that may be further emphasized. With rapidly-evolving data collection technologies, transit data collection methods could expand beyond the traditional onboard survey. The lessons learned from this study could be expanded to provide a robust and detailed data source for transit operations and planning
    • …
    corecore