128 research outputs found

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    From AADL Model to LNT Specification

    Get PDF
    The verification of distributed real-time systems designed by architectural languages such as AADL (Architecture Analysis and Design Language) is a research challenge. These systems are often used in safety- critical domains where one mistake can result in physical damages and even life loss. In such domains, formal methods are a suitable solution for rigorous analysis. This paper studies the formal verification of distributed real-time systems modelled with AADL. We transform AADL model to another specification formalism enabling the verification. We choose LNT language which is an input to CADP toolbox for formal analysis. Then, we illustrate our approach with the ”Flight Control System” case study

    Formal VeriïŹcation of AADL models with Fiacre and Tina

    Get PDF
    9 pagesInternational audienceThis paper details works undertaken in the scope of the Spices project concerning the behavioral verification of AADL models. We give a high-level view of the tools involved and describe the successive transformations performed by our verification process. We also report on an experiment carried out in order to evaluate our framework and give the first experimental results obtained on real-size models. This demonstrator models a network protocol in charge of data communications between an airplane and ground stations. From this study we draw a set of conclusions about the integration of model-checking tools in an industrial development process

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    From AADL to Timed Abstract State Machines: A Verified Model Transformation

    Get PDF
    International audienceArchitecture Analysis and Design Language (AADL) is an architecture description language standard for embedded real-time systems widely used in the avionics and aerospace industry to model safety-critical applications. To verify and analyze the AADL models, model transformation technologies are often used to automatically extract a formal specification suitable for analysis and verification. In this process, it remains a challenge to prove that the model transformation preserves the semantics of the initial AADL model or, at least, some of the specific properties or requirements it needs to satisfy. This paper presents a machine checked semantics-preserving transformation of a subset of AADL (including periodic threads, data port communications, mode changes, and the AADL behavior annex) into Timed Abstract State Machines (TASM). The AADL standard itself lacks at present a formal semantics to make this translation validation possible. Our contribution is to bridge this gap by providing two formal semantics for the subset of AADL. The execution semantics provided by the AADL standard is formalized as Timed Transition Systems (TTS). This formalization gives a reference expression of AADL semantics which can be compared with the TASM-based translation (for verification purpose). Finally, the verified transformation is mechanized in the theorem prover Coq

    Analysing Access Control Specifications

    Get PDF
    • 

    corecore