82 research outputs found

    Application of Expurgated PPM to Indoor Visible Light Communications - Part II: Access Networks

    Full text link
    Providing network access for multiple users in a visible light communication (VLC) system that utilizes white light emitting diodes (LED) as sources requires new networking techniques adapted to the lighting features. In this paper we introduce two multiple access techniques using expurgated PPM (EPPM) that can be implemented using LEDs and support lighting features such as dimming. Multilevel symbols are used to provide M-ary signaling for multiple users using multilevel EPPM (MEPPM). Using these multiple-access schemes we are able to control the optical peak to average power ratio (PAPR) in the system, and hereby control the dimming level. In the first technique, the M-ary data of each user is first encoded using an optical orthogonal code (OOC) assigned to the user, and the result is fed into a EPPM encoder to generate a multilevel signal. The second multiple access method uses sub-sets of the EPPM constellation to apply MEPPM to the data of each user. While the first approach has a larger Hamming distance between the symbols of each user, the latter can provide higher bit-rates for users in VLC systems using bandwidth-limited LEDs.Comment: Journal of Lightwave Technology. arXiv admin note: substantial text overlap with arXiv:1308.074

    High-Speed Visible Light Indoor Networks Based on Optical Orthogonal Codes and Combinatorial Designs

    Full text link
    Interconnecting devices in an indoor environment using the illumination system and white light emitting diodes (LED) requires adaptive networking techniques that can provide network access for multiple users. Two techniques based on multilevel signaling and optical orthogonal codes (OOC) are explored in this paper in order to provide simultaneous multiple access in an indoor multiuser network. Balanced incomplete block designs (BIBD) are used to construct multilevel symbols for M-ary signaling. Using these multilevel symbols we are able to control the optical peak to average power ratio (PAPR) in the system, and hereby control the dimming level. In the first technique, the M-ary data of each user is first encoded using the OOC codeword that is assigned to that user, and then it is fed into a BIBD encoder to generate a multilevel signal. The second multiple access method uses sub-sets of a BIBD code to apply multilevel expurgated pulse-position modulation (MEPPM) to the data of each user. While the first approach has a larger Hamming distance between the symbols of each user, the latter can provide higher bit-rates for users in VLC systems with bandwidth-limited LEDs

    Establishment Network by Using FSO Link Based on MD Code for Hybrid SCM-SAC-OCDMA Wireless System

    Get PDF
    Since the wireless systems are working under nature environments and influenced by turbulence, weather in Iraq that leads to extended amount of fading signal, dissipation or attenuation. Basic “hybrid Subcarrier Multiplying Spectral Amplitude Coding (SCM-SAC) of Optical Code Division Multiple Access (OCDMA)" indoor or outdoor optical system depends on generally “Multi-Diagonal (MD)" security code by using optical space known as “Free Space Optic (FSO)" that was proposed in this work. It is found that the mention hybrid wireless systems can be used in operating mesh networks. The main proposed idea of hybrid optical technique was analyzed and simulated by normally taking into simulation account that the directly effecting by rain and haze attenuations. In addition, there are mention and description for atmospheric effects, FSO mesh network, modulation scheme, simulation, and the data security. From simulation results, the hybrid system using MD code produces reduced “bit-error rate (BER)" at heavy storm rain to distance or range of 500 m and at drizzle rain up to 2500 m range. And also investigates the performance of using the proposed system with radio over fiber (RoF) for UWB signals through indoor propagation in building applications of wireless channel

    Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Get PDF
    This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA) computer network with different quality of service (QoS) requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs), which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD) noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks

    Throughput Performance Evaluation of Multiservice Multirate OCDMA in Flexible Networks

    Get PDF
    \u3cp\u3eIn this paper, new analytical formalisms to evaluate the packet throughput of multiservice multirate slotted ALOHA optical code-division multiple-access (OCDMA) networks are proposed. The proposed formalisms can be successfully applied to 1-D and 2-D OCDMA networks with any number of user classes in the system. The bit error rate (BER) and packet correct probability expressions are derived, considering the multiple-access interference as binomially distributed. Packet throughput expressions, on the other hand, are derived considering Poisson, binomial, and Markov chain approaches for the composite packet arrivals distributions, with the latter defined as benchmark. A throughput performance evaluation is carried out for two distinct user code sequences separately, namely, 1-D and 2-D multiweight multilength optical orthogonal code (MWML-OOC). Numerical results show that the Poisson approach underestimates the throughput performance in unacceptable levels and incorrectly predicts the number of successfully received packets for most offered load values even in favorable conditions, such as for the 2-D MWML-OOC OCDMA network with a considerably large number of simultaneous users. On the other hand, the binomial approach proved to be more straightforward, computationally more efficient, and just as accurate as the Markov chain approach.\u3c/p\u3

    Applications of perfect difference codes in fiber-optics and wireless optical code-division multiplexing/multiple-access systems

    Get PDF
    After establishing itself in the radio domain, Spread spectrum code-division multiplexing/multiple-access (CDMA) has seen a recent upsurge in optical domain as well. Due to its fairness, flexibility, service differentiation and increased inherent security, CDMA is proved to be more suitable for the bursty nature of local area networks than synchronous multiplexing techniques like Frequency/Wavelength Division Multiplexing (F/WDM) and Time Division Multiplexing (TDM). In optical domain, CDMA techniques are commonly known as Optical-CDMA (O-CDMA). All optical CDMA systems are plagued with the problem of multiple-access interference (MAI). Spectral amplitude coding (SAC) is one of the techniques used in the literature to deal with the problem of MAI. The choice of spreading code in any CDMA system is another way to ensure the successful recovery of data at the receiving end by minimizing the effect of MAI and it also dictates the hardware design of the encoder and decoder. This thesis focuses on the efficient design of encoding and decoding hardware. Perfect difference codes (PDC) are chosen as spreading sequences due to their good correlation properties. In most of the literature, evaluation of error probability is based on the assumptions of ideal conditions. Such assumptions ignore major physical impairments such as power splitting losses at the multiplexers of transmitters and receivers, and gain losses at the receivers, which may in practice be an overestimate or underestimate of the actual probability of error. This thesis aims to investigate thoroughly with the consideration of practical impairments the applications of PDCs and other spreading sequences in optical communications systems based on spectral-amplitude coding and utilizing codedivision as multiplexing/multiple-access technique. This work begins with a xix general review of optical CDMA systems. An open-ended practical approach has been used to evaluate the actual error probabilities of OCDM/A systems under study. It has been concluded from results that mismatches in the gains of photodetectors, namely avalanche photodiode (APDs), used at the receiver side and uniformity loss in the optical splitters results in the inaccurate calculation of threshold level used to detect the data and can seriously degrade the system bit error rate (BER) performance. This variation in the threshold level can be compensated by employing techniques which maintain a constant interference level so that the decoding architecture does not have to estimate MAI every time to make a data bit decision or by the use of balanced sequences. In this thesis, as a solution to the above problem, a novel encoding and decoding architecture is presented for perfect difference codes based on common zero code technique which maintains a constant interference level at all instants in CDM system and thus relieves the need of estimating interference. The proposed architecture only uses single multiplexer at the transmitters for all users in the system and a simple correlation based receiver for each user. The proposed configuration not only preserves the ability of MAI in Spectral-Amplitude Coding SAC-OCDM system, but also results in a low cost system with reduced complexity. The results show that by using PDCs in such system, the influence of MAI caused by other users can be reduced, and the number of active users can be increased significantly. Also a family of novel spreading sequences are constructed called Manchestercoded Modified Legendre codes (MCMLCs) suitable for SAC based OCDM systems. MCMLCs are designed to be used for both single-rate and Multirate systems. First the construction of MCMLCs is presented and then the bit error rate performance is analyzed. Finally the proposed encoding/decoding architecture utilizing perfect difference codes is applied in wireless infrared environment and the performance is found to be superior to other codes

    Dark signalling and code division multiple access in an optical fibre LAN with a bus topology

    Get PDF
    This thesis describes an optical fibre network that uses a bus topology and Code Division Multiple Access (CDMA). Various potential configurations are analysed and compared and it is shown that a serious limitation of optical CDMA schemes using incoherent correlators is the effect of optical beating due to the presence of multiple incoherent optical signals at the receiver photodiode. The network proposed and analysed in this thesis avoids beating between multiple optical fields because it only uses a single, shared, optical source. It does this through the SLIM (Single Light-source with In-line Modulation) configuration in which there is a continuously-operating light source at the head-end of a folded bus, and modulators at the nodes to impose signals on the optical field in the form of pulses of darkness which propagate along the otherwise continuously bright bus. Optical CDMA can use optical-fibre delay-line correlators as matched filters, and these may be operated either coherently or incoherently.Coherent operation is significantly more complex than incoherent operation, but incoherent correlators introduce further beating even in a SLIM network. A new design of optical delay-line correlator, the hybrid correlator, is therefore proposed, analysed and demonstrated. It is shown to eliminate beating. A model of a complete network predicts that a SLIMbus using optical CDMA with hybrid correlators can be operated at TeraBaud rates with the number of simultaneous users limited by multiple access interference (MAI), determined only by the combinatorics of the code set
    • 

    corecore