761 research outputs found

    Optimization of a parallel ocean general circulation model

    Full text link
    Global climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting the future climate change. Three-dimensional time-dependent ocean general circulation models (OGCMs) require a large amount of memory and processing time to run realistic simulations. Recent advances in computing hardware have dramatically affected the prospect of studying the global climate. The significant computational resources of massively parallel supercomputers promise to make such studies feasible. In addition to using advanced hardware, designing and implementing a well-optimized parallel ocean code will significantly improve the computational performance and reduce the total research time to complete these studies. In our present work, we chose the most widely used OGCM code as our base code. This OGCM is based on the Parallel Ocean Program (POP) developed in FORTRAN 90 on the Los Alamos CM-2 Connection Machine by the Los Alamos ocean modeling research group. During the first half of 1994, the code was ported to the Cray T3D by Cray Research using SHMEM-based message passing. Since the code on the T3D was still time-consuming when large problems were encountered, improving the code performance was considered essential. We have developed several general strategies to optimize the ocean general circulation model on the Cray T3D. These strategies include memory optimization, effective use of arithmetic pipelines, and usage of optimized libraries. The optimize

    Urban security annual report for 1997

    Full text link

    The atmospheric effects of stratospheric aircraft

    Get PDF
    This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations
    • …
    corecore