706 research outputs found

    Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi

    Full text link
    Intel Xeon Phi is a recently released high-performance coprocessor which features 61 cores each supporting 4 hardware threads with 512-bit wide SIMD registers achieving a peak theoretical performance of 1Tflop/s in double precision. Many scientific applications involve operations on large sparse matrices such as linear solvers, eigensolver, and graph mining algorithms. The core of most of these applications involves the multiplication of a large, sparse matrix with a dense vector (SpMV). In this paper, we investigate the performance of the Xeon Phi coprocessor for SpMV. We first provide a comprehensive introduction to this new architecture and analyze its peak performance with a number of micro benchmarks. Although the design of a Xeon Phi core is not much different than those of the cores in modern processors, its large number of cores and hyperthreading capability allow many application to saturate the available memory bandwidth, which is not the case for many cutting-edge processors. Yet, our performance studies show that it is the memory latency not the bandwidth which creates a bottleneck for SpMV on this architecture. Finally, our experiments show that Xeon Phi's sparse kernel performance is very promising and even better than that of cutting-edge general purpose processors and GPUs

    Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern Multi- and Many-Core Processors

    Full text link
    This paper presents a low-overhead optimizer for the ubiquitous sparse matrix-vector multiplication (SpMV) kernel. Architectural diversity among different processors together with structural diversity among different sparse matrices lead to bottleneck diversity. This justifies an SpMV optimizer that is both matrix- and architecture-adaptive through runtime specialization. To this direction, we present an approach that first identifies the performance bottlenecks of SpMV for a given sparse matrix on the target platform either through profiling or by matrix property inspection, and then selects suitable optimizations to tackle those bottlenecks. Our optimization pool is based on the widely used Compressed Sparse Row (CSR) sparse matrix storage format and has low preprocessing overheads, making our overall approach practical even in cases where fast decision making and optimization setup is required. We evaluate our optimizer on three x86-based computing platforms and demonstrate that it is able to distinguish and appropriately optimize SpMV for the majority of matrices in a representative test suite, leading to significant speedups over the CSR and Inspector-Executor CSR SpMV kernels available in the latest release of the Intel MKL library.Comment: 10 pages, 7 figures, ICPP 201

    CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a fundamental building block for numerous applications. In this paper, we propose CSR5 (Compressed Sparse Row 5), a new storage format, which offers high-throughput SpMV on various platforms including CPUs, GPUs and Xeon Phi. First, the CSR5 format is insensitive to the sparsity structure of the input matrix. Thus the single format can support an SpMV algorithm that is efficient both for regular matrices and for irregular matrices. Furthermore, we show that the overhead of the format conversion from the CSR to the CSR5 can be as low as the cost of a few SpMV operations. We compare the CSR5-based SpMV algorithm with 11 state-of-the-art formats and algorithms on four mainstream processors using 14 regular and 10 irregular matrices as a benchmark suite. For the 14 regular matrices in the suite, we achieve comparable or better performance over the previous work. For the 10 irregular matrices, the CSR5 obtains average performance improvement of 17.6\%, 28.5\%, 173.0\% and 293.3\% (up to 213.3\%, 153.6\%, 405.1\% and 943.3\%) over the best existing work on dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and an Intel Xeon Phi, respectively. For real-world applications such as a solver with only tens of iterations, the CSR5 format can be more practical because of its low-overhead for format conversion. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSR5Comment: 12 pages, 10 figures, In Proceedings of the 29th ACM International Conference on Supercomputing (ICS '15

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures

    Get PDF
    Feltor is a modular and free scientific software package. It allows developing platform independent code that runs on a variety of parallel computer architectures ranging from laptop CPUs to multi-GPU distributed memory systems. Feltor consists of both a numerical library and a collection of application codes built on top of the library. Its main target are two- and three-dimensional drift- and gyro-fluid simulations with discontinuous Galerkin methods as the main numerical discretization technique. We observe that numerical simulations of a recently developed gyro-fluid model produce non-deterministic results in parallel computations. First, we show how we restore accuracy and bitwise reproducibility algorithmically and programmatically. In particular, we adopt an implementation of the exactly rounded dot product based on long accumulators, which avoids accuracy losses especially in parallel applications. However, reproducibility and accuracy alone fail to indicate correct simulation behaviour. In fact, in the physical model slightly different initial conditions lead to vastly different end states. This behaviour translates to its numerical representation. Pointwise convergence, even in principle, becomes impossible for long simulation times. In a second part, we explore important performance tuning considerations. We identify latency and memory bandwidth as the main performance indicators of our routines. Based on these, we propose a parallel performance model that predicts the execution time of algorithms implemented in Feltor and test our model on a selection of parallel hardware architectures. We are able to predict the execution time with a relative error of less than 25% for problem sizes between 0.1 and 1000 MB. Finally, we find that the product of latency and bandwidth gives a minimum array size per compute node to achieve a scaling efficiency above 50% (both strong and weak)
    • …
    corecore