7,096 research outputs found

    Semantic reasoning in cognitive networks for heterogeneous wireless mesh systems

    Get PDF
    The next generation of wireless networks is expected to provide not only higher bandwidths anywhere and at any time but also ubiquitous communication using different network types. However, several important issues including routing, self-configuration, device management, and context awareness have to be considered before this vision becomes reality. This paper proposes a novel cognitive network framework for heterogeneous wireless mesh systems to abstract the network control system from the infrastructure by introducing a layer that separates the management of different radio access networks from the data transmission. This approach simplifies the process of managing and optimizing the networks by using extendable smart middleware that automatically manages, configures, and optimizes the network performance. The proposed cognitive network framework, called FuzzOnto, is based on a novel approach that employs ontologies and fuzzy reasoning to facilitate the dynamic addition of new network types to the heterogeneous network. The novelty is in using semantic reasoning with cross-layer parameters from heterogeneous network architectures to manage and optimize the performance of the networks. The concept is demonstrated through the use of three network architectures: 1) wireless mesh network; 2) long-term evolution (LTE) cellular network; and 3) vehicular ad hoc network (VANET). These networks utilize nonoverlapped frequency bands and can operate simultaneously with no interference. The proposed heterogeneous network was evaluated using ns-3 network simulation software. The simulation results were compared with those produced by other networks that utilize multiple transmission devices. The results showed that the heterogeneous network outperformed the benchmark networks in both urban and VANET scenarios by up to 70% of the network throughput, even when the LTE network utilized a high bandwidth

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Collaboration and Virtualization in Large Information Systems Projects

    Get PDF
    A project is evolving through different phases from idea and conception until the experiments, implementation and maintenance. The globalization, the Internet, the Web and the mobile computing changed many human activities, and in this respect, the realization of the Information System (IS) projects. The projects are growing, the teams are geographically distributed, and the users are heterogeneous. In this respect, the realization of the large Information Technology (IT) projects needs to use collaborative technologies. The distribution of the team, the users' heterogeneity and the project complexity determines the virtualization. This paper is an overview of these aspects for large IT projects. It shortly present a general framework developed by the authors for collaborative systems in general and adapted to collaborative project management. The general considerations are illustrated on the case of a large IT project in which the authors were involved.large IT projects, collaborative systems, virtualization, framework for collaborative virtual systems

    ERMHAN: A Context-Aware Service Platform to Support Continuous Care Networks for Home-Based Assistance

    Get PDF
    Continuous care models for chronic diseases pose several technology-oriented challenges for home-based continuous care, where assistance services rely on a close collaboration among different stakeholders such as health operators, patient relatives, and social community members. Here we describe Emilia Romagna Mobile Health Assistance Network (ERMHAN) a multichannel context-aware service platform designed to support care networks in cooperating and sharing information with the goal of improving patient quality of life. In order to meet extensibility and flexibility requirements, this platform has been developed through ontology-based context-aware computing and a service oriented approach. We also provide some preliminary results of performance analysis and user survey activity

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Geographic Information Systems for Real-Time Environmental Sensing at Multiple Scales

    Get PDF
    The purpose of this investigation was to design, implement, and apply a real-time geographic information system for data intensive water resource research and management. The research presented is part of an ongoing, interdisciplinary research program supporting the development of the Intelligent River® observation instrument. The objectives of this research were to 1) design and describe software architecture for a streaming environmental sensing information system, 2) implement and evaluate the proposed information system, and 3) apply the information system for monitoring, analysis, and visualization of an urban stormwater improvement project located in the City of Aiken, South Carolina, USA. This research contributes to the fields of software architecture and urban ecohydrology. The first contribution is a formal architectural description of a streaming environmental sensing information system. This research demonstrates the operation of the information system and provides a reference point for future software implementations. Contributions to urban ecohydrology are in three areas. First, a characterization of soil properties for the study region of the City of Aiken, SC is provided. The analysis includes an evaluation of spatial structure for soil hydrologic properties. Findings indicate no detectable structure at the scales explored during the study. The second contribution to ecohydrology comes from a long-term, continuous monitoring program for bioinfiltration basin structures located in the study area. Results include an analysis of soil moisture dynamics based on data collected at multiple depths with high spatial and temporal resolution. A novel metric is introduced to evaluate the long-term performance of bioinfiltration basin structures based on soil moisture observation data. Findings indicate a decrease in basin performance over time for the monitored sites. The third contribution to the field of ecohydrology is the development and application of a spatially and temporally explicit rainfall infiltration and excess model. The model enables the simulation and visualization of bioinfiltration basin hydrologic response at within-catchment scales. The model is validated against observed soil moisture data. Results include visualizations and stormwater volume calculations based on measured versus predicted bioinfiltration basin performance over time

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    corecore