32 research outputs found

    Attribute-Level Versioning: A Relational Mechanism for Version Storage and Retrieval

    Get PDF
    Data analysts today have at their disposal a seemingly endless supply of data and repositories hence, datasets from which to draw. New datasets become available daily thus making the choice of which dataset to use difficult. Furthermore, traditional data analysis has been conducted using structured data repositories such as relational database management systems (RDBMS). These systems, by their nature and design, prohibit duplication for indexed collections forcing analysts to choose one value for each of the available attributes for an item in the collection. Often analysts discover two or more datasets with information about the same entity. When combining this data and transforming it into a form that is usable in an RDBMS, analysts are forced to deconflict the collisions and choose a single value for each duplicated attribute containing differing values. This deconfliction is the source of a considerable amount of guesswork and speculation on the part of the analyst in the absence of professional intuition. One must consider what is lost by discarding those alternative values. Are there relationships between the conflicting datasets that have meaning? Is each dataset presenting a different and valid view of the entity or are the alternate values erroneous? If so, which values are erroneous? Is there a historical significance of the variances? The analysis of modern datasets requires the use of specialized algorithms and storage and retrieval mechanisms to identify, deconflict, and assimilate variances of attributes for each entity encountered. These variances, or versions of attribute values, contribute meaning to the evolution and analysis of the entity and its relationship to other entities. A new, distinct storage and retrieval mechanism will enable analysts to efficiently store, analyze, and retrieve the attribute versions without unnecessary complexity or additional alterations of the original or derived dataset schemas. This paper presents technologies and innovations that assist data analysts in discovering meaning within their data and preserving all of the original data for every entity in the RDBMS

    Unwoven Aspect Analysis

    Get PDF
    Various languages and tools supporting advanced separation of concerns (such as aspect-oriented programming) provide a software developer with the ability to separate functional and non-functional programmatic intentions. Once these separate pieces of the software have been specified, the tools automatically handle interaction points between separate modules, relieving the developer of this chore and permitting more understandable, maintainable code. Many approaches have left traditional compiler analysis and optimization until after the composition has been performed; unfortunately, analyses performed after composition cannot make use of the logical separation present in the original program. Further, for modular systems that can be configured with different sets of features, testing under every possible combination of features may be necessary and time-consuming to avoid bugs in production software. To solve this testing problem, we investigate a feature-aware compiler analysis that runs during composition and discovers features strongly independent of each other. When the their independence can be judged, the number of feature combinations that must be separately tested can be reduced. We develop this approach and discuss our implementation. We look forward to future programming languages in two ways: we implement solutions to problems that are conceptually aspect-oriented but for which current aspect languages and tools fail. We study these cases and consider what language designs might provide even more information to a compiler. We describe some features that such a future language might have, based on our observations of current language deficiencies and our experience with compilers for these languages

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1B: Concise review

    Get PDF
    Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed

    Data bases and data base systems related to NASA's aerospace program. A bibliography with indexes

    Get PDF
    This bibliography lists 1778 reports, articles, and other documents introduced into the NASA scientific and technical information system, 1975 through 1980

    Study of applications of bio-space technology to patient monitoring systems Final report

    Get PDF
    Investigation of application of NASA developed technology to cardiovascular and pulmonary patient monitoring to improve availability of data for medical diagnosi

    Inferring latent user attributes in streams on multimodal social data using spark

    Get PDF
    The principal goal of this work can be expressed in two simple words Apache Spark; basically this framework help a developer to deal with big data. Our scope is to understand how Spark operates and use it to deal with Big Data using APIs offered for implement different classifier

    Developing Secure Software With C And C++: A Different Approach

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005Ağa bağlı bilgisayarlar yaygınlaştıkça, günlük işlerin yürütülmesinden devlet sistemlerinin otomasyonuna kadar her seviyede rol almaya başlamışlar ve bu sistemlerin güvenliği de kritik hal almıştır. Bilgi işlem sistemlerinin güvene layık olabilmesi için bütün bileşenlerinin güvenli olması gerekir, yazılım da bu bileşenlerden belki de en önemlisidir. Yazılımların, yaşam süreçlerinin bütün aşamalarında güvenli bir yapıyla sonuçlanacak şekilde tasarlanmaları gerekmektedir. Bu makale, bir yazılımın yaşam sürecini baştan sona ele almaktadır. Güvene layık bir yazılım için her aşamada, nelere dikkat edilmesi gerektiği anlatılmış, hangi tasarım seçeneklerinin olduğu sıralanmış, farklı metotlardan hangilerinin izlenmesinin daha iyi olacağı tartışılmış ve hangi araçların kullanılabileceği incelenmiştir. Bu sayede geliştirme veya bakım gibi değişik aşamalardaki projelere referans kaynağı olarak hizmet verebilmektedir. Bu makalede ele alınan yaşam süreci, yazılım mühendisliğinde sıklıkla başvuru olarak kullanılan, süreci isteklerin tanımı, tasarım, geliştirme, kontrol etme ve bakım olarak bölümleyen “Şelale Yaşam Süreci”dir. Yeni nesil programlama dilleri çıktıkça, C/C++ ve Birleştirici gibi düşük seviye dillerin yeni öğrencilerce benimsenmesi azalmaktadır. Buna ve başka sebeplere de bağlı olarak bu dillerde tecrübeli eleman eksikliği baş gösterdikçe, zaten güvenliğin sağlanmasının göreceli olarak daha zor olduğu bu ortamlarda ciddi güvenlik açıkları oluşmaktadır. Dünya üzerindeki kod tabanının çoğunluğunun halen bu dillerden oluşması durumu daha kritik yapmaktadır. Bu makalede bahsedilen konuların çoğunluğu dilden bağımsız olsa da, ilgili bölümlerde, az önce bahsedilen sorunu göz önüne alarak C/C++ ve Birleştirici dilleri üstünde durulmuştur. Sonuç olarak, yazılım güvenliğinin etkin olarak sağlanabilmesi için, güvenliğin bütün yaşam süreci evrelerinde ele alınması gerekliliği gösterilmiştir. Ayrıca, yaşam sürecinin aşamalarından bir çoğuna, daha önce bu kapsamda uygulanmamış olan yeni yöntemler önerilmiştir.As networked computing penetrates daily life more and more, it becomes more common in every level from daily life to automation of government systems. In order computing systems to be secure, each and every of their components must be secure, too. Software is most important component among those. Each phase of software lifecycle must be implemented in a secure fashion. This thesis is inspecting lifecycle of software from beginning to the end and aligns the new ideas that it is bringing to the lifecycle. After giving necessary background information about the subject, new ideas have been presented, examples have been given and possible other options have been discussed. During explaining most of the subjects, the topics that is considered to be complimentary is either added or referred to. Thanks to that, this thesis can be a reference source to projects in different phases like implementation and maintenance. Waterfall lifecycle model, which is used frequently in software development projects and divides software projects into phases as analysis of requirements, design, implementation, verification and maintenance, is used as a template in this thesis. As new generations of programming languages emerge, adoption of low-level languages such as C/C++ and assembly by new students is decreasing. As lack of experienced staff shows up itself due to this and other causes, severe vulnerabilities are happening in such environments, where developing of secure software is already proven to be hard. The fact that majority of current code base in the world is in those languages makes the situation even more critical. Although most of the subjects in this thesis are programming language independent, C/C++ and assembler language problems are especially covered because of the reasons just mentioned. As a result, it has been shown that security countermeasures must be taken in all phases of software lifecycle in order to ensure high level of security throughout the application. Furthermore, new ideas of security countermeasures have been brought to many of the phases of software lifecycle.Yüksek LisansM.Sc

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation
    corecore