309 research outputs found

    Algorithms and Bounds for Very Strong Rainbow Coloring

    Full text link
    A well-studied coloring problem is to assign colors to the edges of a graph GG so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\src(G)) of the graph. When proving upper bounds on \src(G), it is natural to prove that a coloring exists where, for \emph{every} shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call \emph{very strong rainbow connection number} (\vsrc(G)). In this paper, we give upper bounds on \vsrc(G) for several graph classes, some of which are tight. These immediately imply new upper bounds on \src(G) for these classes, showing that the study of \vsrc(G) enables meaningful progress on bounding \src(G). Then we study the complexity of the problem to compute \vsrc(G), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \vsrc(G) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \src(G). We also observe that deciding whether \vsrc(G) = k is fixed-parameter tractable in kk and the treewidth of GG. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor n1βˆ’Ξ΅n^{1-\varepsilon}, unless P==NP

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be Ο‡\chi-colorable if its vertices can be colored with Ο‡\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2βˆ’k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require β‰ˆn1βˆ’1/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy β„“β‰ͺk\ell \ll \sqrt{k}, we give an algorithm to color the it with β‰ˆnO(β„“2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2βˆ’O(k)2^{-O(k)} (resp. kβˆ’O(k)k^{-O(k)}) fraction of the hyperedges when β„“=O(log⁑k)\ell = O(\log k) (resp. β„“=2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2βˆ’O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (kβˆ’β„“)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kβˆ’Ξ©(k)k^{-\Omega(k)} of the hyperedges when β„“β‰ͺk\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when β„“=k\ell =\sqrt{k}, it is hard to even beat the 2βˆ’k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Derandomized Graph Product Results using the Low Degree Long Code

    Get PDF
    In this paper, we address the question of whether the recent derandomization results obtained by the use of the low-degree long code can be extended to other product settings. We consider two settings: (1) the graph product results of Alon, Dinur, Friedgut and Sudakov [GAFA, 2004] and (2) the "majority is stablest" type of result obtained by Dinur, Mossel and Regev [SICOMP, 2009] and Dinur and Shinkar [In Proc. APPROX, 2010] while studying the hardness of approximate graph coloring. In our first result, we show that there exists a considerably smaller subgraph of K3βŠ—RK_3^{\otimes R} which exhibits the following property (shown for K3βŠ—RK_3^{\otimes R} by Alon et al.): independent sets close in size to the maximum independent set are well approximated by dictators. The "majority is stablest" type of result of Dinur et al. and Dinur and Shinkar shows that if there exist two sets of vertices AA and BB in K3βŠ—RK_3^{\otimes R} with very few edges with one endpoint in AA and another in BB, then it must be the case that the two sets AA and BB share a single influential coordinate. In our second result, we show that a similar "majority is stablest" statement holds good for a considerably smaller subgraph of K3βŠ—RK_3^{\otimes R}. Furthermore using this result, we give a more efficient reduction from Unique Games to the graph coloring problem, leading to improved hardness of approximation results for coloring
    • …
    corecore