6,595 research outputs found

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Energy Analyzer Emulation for Energy Management Simulators

    Get PDF
    The simulation of microgrids to testing and validate energy management methodologies are an important step to take before the massive implementation of microgrids. However, microgrids are usually unavailable for R&D centers to perform tests and validations. To solve this issue is important to get the simulations closer to the reality, using real energy analyzers and loads. However, again, R&D centers lack from funding and space to buy and mount several loads in their laboratories. To solve this issue, this paper proposes a multi-agent system simulator for microgrids and an energy analyzer emulator that can be used to emulate individual loads or entire houses, and therefore, bringing the pure simulation closer to the reality.The present work has been developed under the EUREKA - ITEA2 Project M2MGrids (ITEA-13011), Project SIMOCE (ANI|P2020 17690), and has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013 and SFRH/BD/109248/2015.info:eu-repo/semantics/publishedVersio

    Comparative analysis of tertiary control systems for smart grids using the Flex Street model

    Get PDF
    Various smart grid control systems have been developed with different architectures. Comparison helps developers identify their strong and weak points. A three-step analysis method is proposed to facilitate the comparison of independently developed control systems. In the first step, a microgrid model is created describing demand and supply patterns of controllable and non-controllable devices (Flex Street). In the second step, a version of Flex Street is used to design a case, with a given control objective and key performance indicators. In the last step, simulations of different control systems are performed and their results are analysed and compared. The Flex Street model describes a diverse set of households based on realistic data. Furthermore, its bottom-up modelling approach makes it a flexible tool for designing cases. Currently, three cases with peak-shaving objectives are developed based on scenarios of the Dutch residential sector, specifying various penetration rates of renewable and controllable devices. The proposed method is demonstrated by comparing IntelliGator and TRIANA, two independently developed control systems, on peak reduction, energy efficiency, savings and abated emissions. Results show that IntelliGator---a real-time approach---is proficient in reducing peak demand, while TRIANA---a planning approach---also levels intermediate demand. Both systems yield benefits (\geneuro5--54 per household per year) through reduced transport losses and network investments in the distribution network
    • …
    corecore