2,958 research outputs found

    Perfect simulation of the hard disks model by partial rejection sampling

    Get PDF
    We present a perfect simulation of the hard disks model via the partial rejection sampling method. Provided the density of disks is not too high, the method produces exact samples in O(logn)O(\log n) rounds, and total time O(n)O(n), where nn is the expected number of disks. The method extends easily to the hard spheres model in d>2d>2 dimensions.Comment: v2: linear time implementation and various presentation improvement

    Perfect Simulation of the Hard Disks Model by Partial Rejection Sampling

    Get PDF
    We present a perfect simulation of the hard disks model via the partial rejection sampling method. Provided the density of disks is not too high, the method produces exact samples in O(log n) rounds, and total time O(n), where n is the expected number of disks. The method extends easily to the hard spheres model in d>2 dimensions. In order to apply the partial rejection method to this continuous setting, we provide an alternative perspective of its correctness and run-time analysis that is valid for general state spaces

    Disordered hyperuniformity in two-component non-additive hard disk plasmas

    Full text link
    We study the behavior of a two-component plasma made up of non-additive hard disks with a logarithmic Coulomb interaction. Due to the Coulomb repulsion, long-wavelength total density fluctuations are suppressed and the system is globally hyperuniform. Short-range volume effects lead to phase separation or to hetero-coordination for positive or negative non-additivities, respectively. These effects compete with the hidden long-range order imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with long-wavelength concentration fluctuations partially damped when the system is charged. It is also shown that the decrease of configurational entropy due to hyperuniformity originates from contributions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our system, the spatial configuration associated with each component separately is not hyperuniform, i.e., the system is not "multihyperuniform.

    A rejection-free Monte Carlo method for the hard-disk system

    Full text link
    We construct a rejection-free Monte Carlo method for the hard-disk system. Rejection-free Monte Carlo methods preserve the time-evolution behavior of the standard Monte Carlo method, and this relationship is confirmed for our method by observing nonequilibrium relaxation of a bond-orientational order parameter. The rejection-free method gives a greater computational efficiency than the standard method at high densities. The rejection free method is implemented in a shrewd manner using optimization methods to calculate a rejection probability and to update the system. This method should allow an efficient study of the dynamics of two-dimensional solids at high density.Comment: 8 pages, 9 figures. This paper has been combined into the cond-mat/0508652, and published in Phys. Rev.

    Fundamentals of Partial Rejection Sampling

    Full text link
    Partial Rejection Sampling is an algorithmic approach to obtaining a perfect sample from a specified distribution. The objects to be sampled are assumed to be represented by a number of random variables. In contrast to classical rejection sampling, in which all variables are resampled until a feasible solution is found, partial rejection sampling aims at greater efficiency by resampling only a subset of variables that `go wrong'. Partial rejection sampling is closely related to Moser and Tardos' algorithmic version of the Lov\'asz Local Lemma, but with the additional requirement that a specified output distribution should be met. This article provides a largely self-contained account of the basic form of the algorithm and its analysis
    corecore