1,715 research outputs found

    Perfect sampling algorithm for Schur processes

    Full text link
    We describe random generation algorithms for a large class of random combinatorial objects called Schur processes, which are sequences of random (integer) partitions subject to certain interlacing conditions. This class contains several fundamental combinatorial objects as special cases, such as plane partitions, tilings of Aztec diamonds, pyramid partitions and more generally steep domino tilings of the plane. Our algorithm, which is of polynomial complexity, is both exact (i.e. the output follows exactly the target probability law, which is either Boltzmann or uniform in our case), and entropy optimal (i.e. it reads a minimal number of random bits as an input). The algorithm encompasses previous growth procedures for special Schur processes related to the primal and dual RSK algorithm, as well as the famous domino shuffling algorithm for domino tilings of the Aztec diamond. It can be easily adapted to deal with symmetric Schur processes and general Schur processes involving infinitely many parameters. It is more concrete and easier to implement than Borodin's algorithm, and it is entropy optimal. At a technical level, it relies on unified bijective proofs of the different types of Cauchy and Littlewood identities for Schur functions, and on an adaptation of Fomin's growth diagram description of the RSK algorithm to that setting. Simulations performed with this algorithm suggest interesting limit shape phenomena for the corresponding tiling models, some of which are new.Comment: 26 pages, 19 figures (v3: final version, corrected a few misprints present in v2

    Random Forests and Networks Analysis

    Full text link
    D. Wilson~\cite{[Wi]} in the 1990's described a simple and efficient algorithm based on loop-erased random walks to sample uniform spanning trees and more generally weighted trees or forests spanning a given graph. This algorithm provides a powerful tool in analyzing structures on networks and along this line of thinking, in recent works~\cite{AG1,AG2,ACGM1,ACGM2} we focused on applications of spanning rooted forests on finite graphs. The resulting main conclusions are reviewed in this paper by collecting related theorems, algorithms, heuristics and numerical experiments. A first foundational part on determinantal structures and efficient sampling procedures is followed by four main applications: 1) a random-walk-based notion of well-distributed points in a graph 2) how to describe metastable dynamics in finite settings by means of Markov intertwining dualities 3) coarse graining schemes for networks and associated processes 4) wavelets-like pyramidal algorithms for graph signals.Comment: Survey pape

    Intertwining wavelets or Multiresolution analysis on graphs through random forests

    Full text link
    We propose a new method for performing multiscale analysis of functions defined on the vertices of a finite connected weighted graph. Our approach relies on a random spanning forest to downsample the set of vertices, and on approximate solutions of Markov intertwining relation to provide a subgraph structure and a filter bank leading to a wavelet basis of the set of functions. Our construction involves two parameters q and q'. The first one controls the mean number of kept vertices in the downsampling, while the second one is a tuning parameter between space localization and frequency localization. We provide an explicit reconstruction formula, bounds on the reconstruction operator norm and on the error in the intertwining relation, and a Jackson-like inequality. These bounds lead to recommend a way to choose the parameters q and q'. We illustrate the method by numerical experiments.Comment: 39 pages, 12 figure

    From Aztec diamonds to pyramids: steep tilings

    Full text link
    We introduce a family of domino tilings that includes tilings of the Aztec diamond and pyramid partitions as special cases. These tilings live in a strip of Z2\mathbb{Z}^2 of the form 1xy21 \leq x-y \leq 2\ell for some integer 1\ell \geq 1, and are parametrized by a binary word w{+,}2w\in\{+,-\}^{2\ell} that encodes some periodicity conditions at infinity. Aztec diamond and pyramid partitions correspond respectively to w=(+)w=(+-)^\ell and to the limit case w=+w=+^\infty-^\infty. For each word ww and for different types of boundary conditions, we obtain a nice product formula for the generating function of the associated tilings with respect to the number of flips, that admits a natural multivariate generalization. The main tools are a bijective correspondence with sequences of interlaced partitions and the vertex operator formalism (which we slightly extend in order to handle Littlewood-type identities). In probabilistic terms our tilings map to Schur processes of different types (standard, Pfaffian and periodic). We also introduce a more general model that interpolates between domino tilings and plane partitions.Comment: 36 pages, 22 figures (v3: final accepted version with new Figure 6, new improved proof of Proposition 11
    corecore