276 research outputs found

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Large matchings in uniform hypergraphs and the conjectures of Erdos and Samuels

    Get PDF
    In this paper we study conditions which guarantee the existence of perfect matchings and perfect fractional matchings in uniform hypergraphs. We reduce this problem to an old conjecture by Erd\H{o}s on estimating the maximum number of edges in a hypergraph when the (fractional) matching number is given, which we are able to solve in some special cases using probabilistic techniques. Based on these results, we obtain some general theorems on the minimum dd-degree ensuring the existence of perfect (fractional) matchings. In particular, we asymptotically determine the minimum vertex degree which guarantees a perfect matching in 4-uniform and 5-uniform hypergraphs. We also discuss an application to a problem of finding an optimal data allocation in a distributed storage system

    Hamiltonicity and σ\sigma-hypergraphs

    Get PDF
    We define and study a special type of hypergraph. A σ\sigma-hypergraph H=H(n,r,qH= H(n,r,q ∣\mid σ\sigma), where σ\sigma is a partition of rr, is an rr-uniform hypergraph having nqnq vertices partitioned into n n classes of qq vertices each. If the classes are denoted by V1V_1, V2V_2,...,VnV_n, then a subset KK of V(H)V(H) of size rr is an edge if the partition of rr formed by the non-zero cardinalities ∣ \mid KK ∩\cap Vi∣V_i \mid, 1≤i≤n 1 \leq i \leq n, is σ\sigma. The non-empty intersections KK ∩\cap ViV_i are called the parts of KK, and s(σ)s(\sigma) denotes the number of parts. We consider various types of cycles in hypergraphs such as Berge cycles and sharp cycles in which only consecutive edges have a nonempty intersection. We show that most σ\sigma-hypergraphs contain a Hamiltonian Berge cycle and that, for n≥s+1n \geq s+1 and q≥r(r−1)q \geq r(r-1), a σ\sigma-hypergraph HH always contains a sharp Hamiltonian cycle. We also extend this result to kk-intersecting cycles
    • …
    corecore