17 research outputs found

    An equivalent formulation of the Fan-Raspaud Conjecture and related problems

    Get PDF
    In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic graph has three perfect matchings whose intersection is empty. In this paper we answer a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture. We also study a possibly weaker conjecture originally proposed by the first author, which states that in every simple bridgeless cubic graph there exist two perfect matchings such that the complement of their union is a bipartite graph. Here, we show that this conjecture can be equivalently stated using a variant of Petersen-colourings, we prove it for graphs having oddness at most four and we give a natural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges

    Circuits, Perfect Matchings and Paths in Graphs

    Get PDF
    We primarily consider the problem of finding a family of circuits to cover a bidgeless graph (mainly on cubic graph) with respect to a given weight function defined on the edge set. The first chapter of this thesis is going to cover all basic concepts and notations will be used and a survey of this topic.;In Chapter two, we shall pay our attention to the Strong Circuit Double Cover Conjecture (SCDC Conjecture). This conjecture was verified for some graphs with special structure. As the complement of two factor in cubic graph, the Berge-Fulkersen Conjecture was introduced right after SCDC Conjecture. In Chapter three, we shall present a series of conjectures related to perfect matching covering and point out their relationship.;In last chapter, we shall introduce the saturation number, in contrast to extremal number (or known as Turan Number), and describe the edge spectrum of saturation number for small paths, where the spectrum was consisted of all possible integers between saturation number and Turan number

    REDUCTION OF THE BERGE-FULKERSON CONJECTURE TO CYCLICALLY 5-EDGE-CONNECTED SNARKS

    Get PDF
    The Berge-Fulkerson conjecture, originally formulated in the language of mathematical programming, asserts that the edges of every bridgeless cubic (3-valent) graph can be covered with six perfect matchings in such a way that every edge is in exactly two of them. As with several other classical conjectures in graph theory, every counterexample to the Berge-Fulkerson conjecture must be a non-3-edge-colorable cubic graph. In contrast to Tutte's 5-flow conjecture and the cycle double conjecture, no nontrivial reduction is known for the Berge-Fulkerson conjecture. In the present paper, we prove that a possible minimum counterexample to the conjecture must be cyclically 5-edge-connected

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    On Fulkerson conjecture

    Full text link
    If GG is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a{\em Fulkerson covering}) with the property that every edge of GG is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A {\em FR-triple} is a set of 3 such perfect matchings. We show here how to derive a Fulkerson covering from two FR-triples. Moreover, we give a simple proof that the Fulkerson conjecture holds true for some classes of well known snarks.Comment: Accepted for publication in Discussiones Mathematicae Graph Theory; Discussiones Mathematicae Graph Theory (2010) xxx-yy
    corecore