9,353 research outputs found

    Perfect equilibrium in games with compact action spaces.

    Get PDF

    Dynamic Games with Almost Perfect Information

    Get PDF
    This paper aims to solve two fundamental problems on finite or infinite horizon dynamic games with perfect or almost perfect information. Under some mild conditions, we prove (1) the existence of subgame-perfect equilibria in general dynamic games with almost perfect information, and (2) the existence of pure-strategy subgame-perfect equilibria in perfect-information dynamic games with uncertainty. Our results go beyond previous works on continuous dynamic games in the sense that public randomization and the continuity requirement on the state variables are not needed. As an illustrative application, a dynamic stochastic oligopoly market with intertemporally dependent payoffs is considered

    Communication and equilibrium in discontinuous games of incomplete information

    Get PDF
    This paper offers a new approach to the study of economic problems usually modeled as games of incomplete information with discontinuous payoffs. Typically, the discontinuities arise from indeterminacies (ties) in the underlying problem. The point of view taken here is that the tie-breaking rules that resolve these indeterminacies should be viewed as part of the solution rather than part of the description of the model. A solution is therefore a tie-breaking rule together with strategies satisfying the usual best-response criterion. When information is incomplete, solutions need not exist; that is, there may be no tie-breaking rule that is compatible with the existence of strategy profiles satisfying the usual best-response criteria. It is shown that the introduction of incentive compatible communication (cheap talk) restores existence

    Two Simple Proofs of a Theorem by Harris

    Get PDF
    We present two simple proofs of existence of subgame perfect equi- libria in continuous games with perfect information.

    Mean Field Equilibrium in Dynamic Games with Complementarities

    Full text link
    We study a class of stochastic dynamic games that exhibit strategic complementarities between players; formally, in the games we consider, the payoff of a player has increasing differences between her own state and the empirical distribution of the states of other players. Such games can be used to model a diverse set of applications, including network security models, recommender systems, and dynamic search in markets. Stochastic games are generally difficult to analyze, and these difficulties are only exacerbated when the number of players is large (as might be the case in the preceding examples). We consider an approximation methodology called mean field equilibrium to study these games. In such an equilibrium, each player reacts to only the long run average state of other players. We find necessary conditions for the existence of a mean field equilibrium in such games. Furthermore, as a simple consequence of this existence theorem, we obtain several natural monotonicity properties. We show that there exist a "largest" and a "smallest" equilibrium among all those where the equilibrium strategy used by a player is nondecreasing, and we also show that players converge to each of these equilibria via natural myopic learning dynamics; as we argue, these dynamics are more reasonable than the standard best response dynamics. We also provide sensitivity results, where we quantify how the equilibria of such games move in response to changes in parameters of the game (e.g., the introduction of incentives to players).Comment: 56 pages, 5 figure

    Stochastic discounting in repeated games: awaiting the almost inevitable

    Get PDF
    This paper studies repeated games with pure strategies and stochastic discounting under perfect information. We consider infinite repetitions of any finite normal form game possessing at least one pure Nash action profile. The period interaction realizes a shock in each period, and the cumulative shocks while not affecting period returns, determine the probability of the continuation of the game. We require cumulative shocks to satisfy the following: (1) Markov property; (2) to have a non-negative (across time) covariance matrix; (3) to have bounded increments (across time) and possess a denumerable state space with a rich ergodic subset; (4) there are states of the stochastic process with the resulting stochastic discount factor arbitrarily close to 0, and such states can be reached with positive (yet possibly arbitrarily small) probability in the long run. In our study, a player’s discount factor is a mapping from the state space to (0, 1) satisfying the martingale property. In this setting, we, not only establish the (subgame perfect) folk theorem, but also prove the main result of this study: In any equilibrium path, the occurrence of any finite number of consecutive repetitions of the period Nash action profile, must almost surely happen within a finite time window. That is, any equilibrium strategy almost surely contains arbitrary long realizations of consecutive period Nash action profiles
    • …
    corecore