985 research outputs found

    Global Solutions to Nonconvex Optimization of 4th-Order Polynomial and Log-Sum-Exp Functions

    Full text link
    This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of fourth-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical duality-triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples

    Data-driven Inverse Optimization with Imperfect Information

    Full text link
    In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent's objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect information, that is, where the agent's true objective function is not contained in the search space of candidate objectives, where the agent suffers from bounded rationality or implementation errors, or where the observed signal-response pairs are corrupted by measurement noise. We formalize this inverse optimization problem as a distributionally robust program minimizing the worst-case risk that the {\em predicted} decision ({\em i.e.}, the decision implied by a particular candidate objective) differs from the agent's {\em actual} response to a random signal. We show that our framework offers rigorous out-of-sample guarantees for different loss functions used to measure prediction errors and that the emerging inverse optimization problems can be exactly reformulated as (or safely approximated by) tractable convex programs when a new suboptimality loss function is used. We show through extensive numerical tests that the proposed distributionally robust approach to inverse optimization attains often better out-of-sample performance than the state-of-the-art approaches
    • …
    corecore