4,370 research outputs found

    Perfect codes in 2-valent Cayley digraphs on abelian groups

    Full text link
    For a digraph Γ\Gamma, a subset CC of V(Γ)V(\Gamma) is a perfect code if CC is a dominating set such that every vertex of Γ\Gamma is dominated by exactly one vertex in CC. In this paper, we classify strongly connected 2-valent Cayley digraphs on abelian groups admitting a perfect code, and determine completely all perfect codes of such digraphs

    Choosing VNM-stable sets of the revealed dominance digraph

    Get PDF
    The choice functions that are consistent with selections of VNM-stable sets of an underlying revealed dominance digraph are characterized both under VNM-perfection of the latter and in the general case.VNM-stable sets, kernel-perfect digraphs, choice func-tions 1

    Disimplicial arcs, transitive vertices, and disimplicial eliminations

    Get PDF
    In this article we deal with the problems of finding the disimplicial arcs of a digraph and recognizing some interesting graph classes defined by their existence. A diclique of a digraph is a pair V→WV \to W of sets of vertices such that v→wv \to w is an arc for every v∈Vv \in V and w∈Ww \in W. An arc v→wv \to w is disimplicial when N−(w)→N+(v)N^-(w) \to N^+(v) is a diclique. We show that the problem of finding the disimplicial arcs is equivalent, in terms of time and space complexity, to that of locating the transitive vertices. As a result, an efficient algorithm to find the bisimplicial edges of bipartite graphs is obtained. Then, we develop simple algorithms to build disimplicial elimination schemes, which can be used to generate bisimplicial elimination schemes for bipartite graphs. Finally, we study two classes related to perfect disimplicial elimination digraphs, namely weakly diclique irreducible digraphs and diclique irreducible digraphs. The former class is associated to finite posets, while the latter corresponds to dedekind complete finite posets.Comment: 17 pags., 3 fig

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding

    On Robustness Analysis of a Dynamic Average Consensus Algorithm to Communication Delay

    Full text link
    This paper studies the robustness of a dynamic average consensus algorithm to communication delay over strongly connected and weight-balanced (SCWB) digraphs. Under delay-free communication, the algorithm of interest achieves a practical asymptotic tracking of the dynamic average of the time-varying agents' reference signals. For this algorithm, in both its continuous-time and discrete-time implementations, we characterize the admissible communication delay range and study the effect of the delay on the rate of convergence and the tracking error bound. Our study also includes establishing a relationship between the admissible delay bound and the maximum degree of the SCWB digraphs. We also show that for delays in the admissible bound, for static signals the algorithms achieve perfect tracking. Moreover, when the interaction topology is a connected undirected graph, we show that the discrete-time implementation is guaranteed to tolerate at least one step delay. Simulations demonstrate our results
    • …
    corecore