958 research outputs found

    Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems

    Get PDF
    Friedland's Lower Matching Conjecture asserts that if GG is a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices, and mk(G)m_k(G) denotes the number of matchings of size kk, then mk(G)(nk)2(dpd)n(dp)(dp)np,m_k(G)\geq {n \choose k}^2\left(\frac{d-p}{d}\right)^{n(d-p)}(dp)^{np}, where p=knp=\frac{k}{n}. When p=1p=1, this conjecture reduces to a theorem of Schrijver which says that a dd--regular bipartite graph on v(G)=2nv(G)=2n vertices has at least ((d1)d1dd2)n\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^n perfect matchings. L. Gurvits proved an asymptotic version of the Lower Matching Conjecture, namely he proved that lnmk(G)v(G)12(pln(dp)+(dp)ln(1pd)2(1p)ln(1p))+ov(G)(1).\frac{\ln m_k(G)}{v(G)}\geq \frac{1}{2}\left(p\ln \left(\frac{d}{p}\right)+(d-p)\ln \left(1-\frac{p}{d}\right)-2(1-p)\ln (1-p)\right)+o_{v(G)}(1). In this paper, we prove the Lower Matching Conjecture. In fact, we will prove a slightly stronger statement which gives an extra cpnc_p\sqrt{n} factor compared to the conjecture if pp is separated away from 00 and 11, and is tight up to a constant factor if pp is separated away from 11. We will also give a new proof of Gurvits's and Schrijver's theorems, and we extend these theorems to (a,b)(a,b)--biregular bipartite graphs

    FPRAS for computing a lower bound for weighted matching polynomial of graphs

    Full text link
    We give a fully polynomial randomized approximation scheme to compute a lower bound for the matching polynomial of any weighted graph at a positive argument. For the matching polynomial of complete bipartite graphs with bounded weights these lower bounds are asymptotically optimal.Comment: 16 page

    Towards Resistance Sparsifiers

    Get PDF
    We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a (1+ϵ)(1+\epsilon)-resistance sparsifier of size O~(n/ϵ)\tilde O(n/\epsilon), and conjecture this bound holds for all graphs on nn nodes. In comparison, spectral sparsification is a strictly stronger notion and requires Ω(n/ϵ2)\Omega(n/\epsilon^2) edges even on the complete graph. Our approach leads to the following structural question on graphs: Does every dense regular expander contain a sparse regular expander as a subgraph? Our main technical contribution, which may of independent interest, is a positive answer to this question in a certain setting of parameters. Combining this with a recent result of von Luxburg, Radl, and Hein~(JMLR, 2014) leads to the aforementioned resistance sparsifiers
    corecore