1,618 research outputs found

    Percolation and Connectivity on the Signal to Interference Ratio Graph

    Full text link
    A wireless communication network is considered where any two nodes are connected if the signal-to-interference ratio (SIR) between them is greater than a threshold. Assuming that the nodes of the wireless network are distributed as a Poisson point process (PPP), percolation (unbounded connected cluster) on the resulting SIR graph is studied as a function of the density of the PPP. For both the path-loss as well as path-loss plus fading model of signal propagation, it is shown that for a small enough threshold, there exists a closed interval of densities for which percolation happens with non-zero probability. Conversely, for the path-loss model of signal propagation, it is shown that for a large enough threshold, there exists a closed interval of densities for which the probability of percolation is zero. Restricting all nodes to lie in an unit square, connectivity properties of the SIR graph are also studied. Assigning separate frequency bands or time-slots proportional to the logarithm of the number of nodes to different nodes for transmission/reception is sufficient to guarantee connectivity in the SIR graph.Comment: To appear in the Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2012), to be held in Orlando Florida Mar. 201

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Connectivity in Sub-Poisson Networks

    Get PDF
    We consider a class of point processes (pp), which we call {\em sub-Poisson}; these are pp that can be directionally-convexly (dcxdcx) dominated by some Poisson pp. The dcxdcx order has already been shown useful in comparing various point process characteristics, including Ripley's and correlation functions as well as shot-noise fields generated by pp, indicating in particular that smaller in the dcxdcx order processes exhibit more regularity (less clustering, less voids) in the repartition of their points. Using these results, in this paper we study the impact of the dcxdcx ordering of pp on the properties of two continuum percolation models, which have been proposed in the literature to address macroscopic connectivity properties of large wireless networks. As the first main result of this paper, we extend the classical result on the existence of phase transition in the percolation of the Gilbert's graph (called also the Boolean model), generated by a homogeneous Poisson pp, to the class of homogeneous sub-Poisson pp. We also extend a recent result of the same nature for the SINR graph, to sub-Poisson pp. Finally, as examples we show that the so-called perturbed lattices are sub-Poisson. More generally, perturbed lattices provide some spectrum of models that ranges from periodic grids, usually considered in cellular network context, to Poisson ad-hoc networks, and to various more clustered pp including some doubly stochastic Poisson ones.Comment: 8 pages, 10 figures, to appear in Proc. of Allerton 2010. For an extended version see http://hal.inria.fr/inria-00497707 version

    Continuum Line-of-Sight Percolation on Poisson-Voronoi Tessellations

    Full text link
    In this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson-Voronoi tessellation in the dd-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition ZZ of these two processes, two points of ZZ are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0-1 law, a subcritical phase as well as a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.Comment: 30 pages, 4 figures. Accepted for publication in Advances in Applied Probabilit

    Percolation and Connectivity in the Intrinsically Secure Communications Graph

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper aims to characterize the global properties of the iS-graph in terms of: (i) percolation on the infinite plane, and (ii) full connectivity on a finite region. First, for the Poisson iS-graph defined on the infinite plane, the existence of a phase transition is proven, whereby an unbounded component of connected nodes suddenly arises as the density of legitimate nodes is increased. This shows that long-range secure communication is still possible in the presence of eavesdroppers. Second, full connectivity on a finite region of the Poisson iS-graph is considered. The exact asymptotic behavior of full connectivity in the limit of a large density of legitimate nodes is characterized. Then, simple, explicit expressions are derived in order to closely approximate the probability of full connectivity for a finite density of legitimate nodes. The results help clarify how the presence of eavesdroppers can compromise long-range secure communication.Comment: Submitted for journal publicatio

    Causal Set Dynamics: A Toy Model

    Get PDF
    We construct a quantum measure on the power set of non-cyclic oriented graphs of N points, drawing inspiration from 1-dimensional directed percolation. Quantum interference patterns lead to properties which do not appear to have any analogue in classical percolation. Most notably, instead of the single phase transition of classical percolation, the quantum model displays two distinct crossover points. Between these two points, spacetime questions such as "does the network percolate" have no definite or probabilistic answer.Comment: 28 pages incl. 5 figure
    corecore