1,370 research outputs found

    Speech quality prediction for voice over Internet protocol networks

    Get PDF
    Merged with duplicate record 10026.1/878 on 03.01.2017 by CS (TIS). Merged with duplicate record 10026.1/1657 on 15.03.2017 by CS (TIS)This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin ([email protected]) to discuss options.IP networks are on a steep slope of innovation that will make them the long-term carrier of all types of traffic, including voice. However, such networks are not designed to support real-time voice communication because their variable characteristics (e.g. due to delay, delay variation and packet loss) lead to a deterioration in voice quality. A major challenge in such networks is how to measure or predict voice quality accurately and efficiently for QoS monitoring and/or control purposes to ensure that technical and commercial requirements are met. Voice quality can be measured using either subjective or objective methods. Subjective measurement (e.g. MOS) is the benchmark for objective methods, but it is slow, time consuming and expensive. Objective measurement can be intrusive or non-intrusive. Intrusive methods (e.g. ITU PESQ) are more accurate, but normally are unsuitable for monitoring live traffic because of the need for a reference data and to utilise the network. This makes non-intrusive methods(e.g. ITU E-model) more attractive for monitoring voice quality from IP network impairments. However, current non-intrusive methods rely on subjective tests to derive model parameters and as a result are limited and do not meet new and emerging applications. The main goal of the project is to develop novel and efficient models for non-intrusive speech quality prediction to overcome the disadvantages of current subjective-based methods and to demonstrate their usefulness in new and emerging VoIP applications. The main contributions of the thesis are fourfold: (1) a detailed understanding of the relationships between voice quality, IP network impairments (e.g. packet loss, jitter and delay) and relevant parameters associated with speech (e.g. codec type, gender and language) is provided. An understanding of the perceptual effects of these key parameters on voice quality is important as it provides a basis for the development of non-intrusive voice quality prediction models. A fundamental investigation of the impact of the parameters on perceived voice quality was carried out using the latest ITU algorithm for perceptual evaluation of speech quality, PESQ, and by exploiting the ITU E-model to obtain an objective measure of voice quality. (2) a new methodology to predict voice quality non-intrusively was developed. The method exploits the intrusive algorithm, PESQ, and a combined PESQ/E-model structure to provide a perceptually accurate prediction of both listening and conversational voice quality non-intrusively. This avoids time-consuming subjective tests and so removes one of the major obstacles in the development of models for voice quality prediction. The method is generic and as such has wide applicability in multimedia applications. Efficient regression-based models and robust artificial neural network-based learning models were developed for predicting voice quality non-intrusively for VoIP applications. (3) three applications of the new models were investigated: voice quality monitoring/prediction for real Internet VoIP traces, perceived quality driven playout buffer optimization and perceived quality driven QoS control. The neural network and regression models were both used to predict voice quality for real Internet VoIP traces based on international links. A new adaptive playout buffer and a perceptual optimization playout buffer algorithms are presented. A QoS control scheme that combines the strengths of rate-adaptive and priority marking control schemes to provide a superior QoS control in terms of measured perceived voice quality is also provided. (4) a new methodology for Internet-based subjective speech quality measurement which allows rapid assessment of voice quality for VoIP applications is proposed and assessed using both objective and traditional MOS test methods

    Learning-Based Reference-Free Speech Quality Assessment for Normal Hearing and Hearing Impaired Applications

    Get PDF
    Accurate speech quality measures are highly attractive and beneficial in the design, fine-tuning, and benchmarking of speech processing algorithms, devices, and communication systems. Switching from narrowband telecommunication to wideband telephony is a change within the telecommunication industry which provides users with better speech quality experience but introduces a number of challenges in speech processing. Noise is the most common distortion on audio signals and as a result there have been a lot of studies on developing high performance noise reduction algorithms. Assistive hearing devices are designed to decrease communication difficulties for people with loss of hearing. As the algorithms within these devices become more advanced, it becomes increasingly crucial to develop accurate and robust quality metrics to assess their performance. Objective speech quality measurements are more attractive compared to subjective assessments as they are cost-effective and subjective variability is eliminated. Although there has been extensive research on objective speech quality evaluation for narrowband speech, those methods are unsuitable for wideband telephony. In the case of hearing-impaired applications, objective quality assessment is challenging as it has to be capable of distinguishing between desired modifications which make signals audible and undesired artifacts. In this thesis a model is proposed that allows extracting two sets of features from the distorted signal only. This approach which is called reference-free (nonintrusive) assessment is attractive as it does not need access to the reference signal. Although this benefit makes nonintrusive assessments suitable for real-time applications, more features need to be extracted and smartly combined to provide comparable accuracy as intrusive metrics. Two feature vectors are proposed to extract information from distorted signals and their performance is examined in three studies. In the first study, both feature vectors are trained on various portions of a noise reduction database for normal hearing applications. In the second study, the same investigation is performed on two sets of databases acquired through several hearing aids. Third study examined the generalizability of the proposed metrics on benchmarking four wireless remote microphones in a variety of environmental conditions. Machine learning techniques are deployed for training the models in the three studies. The studies show that one of the feature sets is robust when trained on different portions of the data from different databases and it also provides good quality prediction accuracy for both normal hearing and hearing-impaired applications

    Non-intrusive speech quality prediction using modulation energies and LSTM-network

    Get PDF
    Many signal processing algorithms have been proposed to improve the quality of speech recorded in the presence of noise and reverberation. Perceptual measures, i.e., listening tests, are usually considered the most reliable way to evaluate the quality of speech processed by such algorithms but are costly and time-consuming. Consequently, speech enhancement algorithms are often evaluated using signal-based measures, which can be either intrusive or non-intrusive. As the computation of intrusive measures requires a reference signal, only non-intrusive measures can be used in applications for which the clean speech signal is not available. However, many existing non-intrusive measures correlate poorly with the perceived speech quality, particularly when applied over a wide range of algorithms or acoustic conditions. In this paper, we propose a novel non-intrusive measure of the quality of processed speech that combines modulation energy features and a recurrent neural network using long short-term memory cells. We collected a dataset of perceptually evaluated signals representing several acoustic conditions and algorithms and used this dataset to train and evaluate the proposed measure. Results show that the proposed measure yields higher correlation with perceptual speech quality than that of benchmark intrusive and non-intrusive measures when considering various categories of algorithms. Although the proposed measure is sensitive to mismatch between training and testing, results show that it is a useful approach to evaluate specific algorithms over a wide range of acoustic conditions and may, thus, become particularly useful for real-time selection of speech enhancement algorithm settings

    VoIP Quality Assessment Technologies

    Get PDF

    Attention-based Speech Enhancement Using Human Quality Perception Modelling

    Full text link
    Perceptually-inspired objective functions such as the perceptual evaluation of speech quality (PESQ), signal-to-distortion ratio (SDR), and short-time objective intelligibility (STOI), have recently been used to optimize performance of deep-learning-based speech enhancement algorithms. These objective functions, however, do not always strongly correlate with a listener's assessment of perceptual quality, so optimizing with these measures often results in poorer performance in real-world scenarios. In this work, we propose an attention-based enhancement approach that uses learned speech embedding vectors from a mean-opinion score (MOS) prediction model and a speech enhancement module to jointly enhance noisy speech. The MOS prediction model estimates the perceptual MOS of speech quality, as assessed by human listeners, directly from the audio signal. The enhancement module also employs a quantized language model that enforces spectral constraints for better speech realism and performance. We train the model using real-world noisy speech data that has been captured in everyday environments and test it using unseen corpora. The results show that our proposed approach significantly outperforms other approaches that are optimized with objective measures, where the predicted quality scores strongly correlate with human judgments.Comment: 11 pages, 4 figures, 3 tables, submitted in journal TASLP 202
    • …
    corecore