362 research outputs found

    Perceptually lossless High Dynamic Range image compression with JPEG 2000

    Full text link

    JNCD-based perceptual compression of RGB 4:4:4 image data

    Get PDF
    In contemporary lossy image coding applications, a desired aim is to decrease, as much as possible, bits per pixel without inducing perceptually conspicuous distortions in RGB image data. In this paper, we propose a novel color-based perceptual compression technique, named RGB-PAQ. RGB-PAQ is based on CIELAB Just Noticeable Color Difference (JNCD) and Human Visual System (HVS) spectral sensitivity. We utilize CIELAB JNCD and HVS spectral sensitivity modeling to separately adjust quantization levels at the Coding Block (CB) level. In essence, our method is designed to capitalize on the inability of the HVS to perceptually differentiate photons in very similar wavelength bands. In terms of application, the proposed technique can be used with RGB (4:4:4) image data of various bit depths and spatial resolutions including, for example, true color and deep color images in HD and Ultra HD resolutions. In the evaluations, we compare RGB-PAQ with a set of anchor methods; namely, HEVC, JPEG, JPEG 2000 and Google WebP. Compared with HEVC HM RExt, RGB-PAQ achieves up to 77.8% bits reductions. The subjective evaluations confirm that the compression artifacts induced by RGB-PAQ proved to be either imperceptible (MOS = 5) or near-imperceptible (MOS = 4) in the vast majority of cases

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

    Full text link
    We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several metrics. Second, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the network's hidden state. Finally, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well recently published methods based on deep neural networks

    Visually Lossless Perceptual Image Coding Based on Natural- Scene Masking Models

    Get PDF
    Perceptual coding is a subdiscipline of image and video coding that uses models of human visual perception to achieve improved compression efficiency. Nearly, all image and video coders have included some perceptual coding strategies, most notably visual masking. Today, modern coders capitalize on various basic forms of masking such as the fact that distortion is harder to see in very dark and very bright regions, in regions with higher frequency content, and in temporal regions with abrupt changes. However, beyond these obvious forms of masking, there are many other masking phenomena that occur (and co-occur) when viewing natural imagery. In this chapter, we present our latest research in perceptual image coding using natural-scene masking models. We specifically discuss: (1) how to predict local distortion visibility using improved natural-scene masking models and (2) how to apply the models to high efficiency video coding (HEVC). As we will demonstrate, these techniques can offer 10–20% fewer bits than baseline HEVC in the ultra-high-quality regime
    • …
    corecore