803 research outputs found

    Generative Joint Source-Channel Coding for Semantic Image Transmission

    Get PDF
    Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art (SotA) DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.Comment: 12 pages, 9 figure

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks

    Get PDF
    يستهلك إرسال واستقبال البيانات معظم الموارد في شبكات الاستشعار اللاسلكية (WSNs). تعد الطاقة التي توفرها البطارية أهم مورد يؤثر على عمر WSN في عقدة المستشعر. لذلك، نظرًا لأن عُقد المستشعر تعمل بالاعتماد على بطاريتها المحدودة ، فإن توفير الطاقة ضروري. يمكن تعريف تجميع البيانات كإجراء مطبق للقضاء على عمليات الإرسال الزائدة عن الحاجة ، ويوفر معلومات مدمجة إلى المحطات الأساسية ، مما يؤدي بدوره إلى تحسين فعالية الطاقة وزيادة عمر الشبكات اللاسلكية ذات للطاقة المحدودة. في هذا البحث ، تم اقتراح طريقة تجميع البيانات المستندة إلى النقاط المهمة إدراكيًا (PIP-DA) لشبكات المستشعرات اللاسلكية لتقليل البيانات الزائدة عن الحاجة قبل إرسالها إلى المحطة الاساسية. من خلال استخدام مجموعة بيانات Intel Berkeley Research Lab (IBRL) ، تم قياس كفاءة الطريقة المقترحة. توضح النتائج التجريبية فوائد الطريقة المقترحة حيث تعمل على تقليل الحمل على مستوى عقدة الاستشعار حتى 1.25٪ في البيانات المتبقية وتقليل استهلاك الطاقة حتى 93٪ مقارنة ببروتوكولات PFF و ATP.The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the sink. By utilizing Intel Berkeley Research Lab (IBRL) dataset, the efficiency of the proposed method was measured. The experimental findings illustrate the benefits of the proposed method as it reduces the overhead on the sensor node level up to 1.25% in remaining data and reduces the energy consumption up to 93% compared to prefix frequency filtering (PFF) and ATP protocols

    Robust and Scalable Transmission of Arbitrary 3D Models over Wireless Networks

    Get PDF
    We describe transmission of 3D objects represented by texture and mesh over unreliable networks, extending our earlier work for regular mesh structure to arbitrary meshes and considering linear versus cubic interpolation. Our approach to arbitrary meshes considers stripification of the mesh and distributing nearby vertices into different packets, combined with a strategy that does not need texture or mesh packets to be retransmitted. Only the valence (connectivity) packets need to be retransmitted; however, storage of valence information requires only 10% space compared to vertices and even less compared to photorealistic texture. Thus, less than 5% of the packets may need to be retransmitted in the worst case to allow our algorithm to successfully reconstruct an acceptable object under severe packet loss. Even though packet loss during transmission has received limited research attention in the past, this topic is important for improving quality under lossy conditions created by shadowing and interference. Results showing the implementation of the proposed approach using linear, cubic, and Laplacian interpolation are described, and the mesh reconstruction strategy is compared with other methods

    A Jointly Optimized Variable M

    Get PDF
    corecore