1,963 research outputs found

    Renewing the respect for similarity

    Get PDF
    In psychology, the concept of similarity has traditionally evoked a mixture of respect, stemming from its ubiquity and intuitive appeal, and concern, due to its dependence on the framing of the problem at hand and on its context. We argue for a renewed focus on similarity as an explanatory concept, by surveying established results and new developments in the theory and methods of similarity-preserving associative lookup and dimensionality reduction—critical components of many cognitive functions, as well as of intelligent data management in computer vision. We focus in particular on the growing family of algorithms that support associative memory by performing hashing that respects local similarity, and on the uses of similarity in representing structured objects and scenes. Insofar as these similarity-based ideas and methods are useful in cognitive modeling and in AI applications, they should be included in the core conceptual toolkit of computational neuroscience. In support of this stance, the present paper (1) offers a discussion of conceptual, mathematical, computational, and empirical aspects of similarity, as applied to the problems of visual object and scene representation, recognition, and interpretation, (2) mentions some key computational problems arising in attempts to put similarity to use, along with their possible solutions, (3) briefly states a previously developed similarity-based framework for visual object representation, the Chorus of Prototypes, along with the empirical support it enjoys, (4) presents new mathematical insights into the effectiveness of this framework, derived from its relationship to locality-sensitive hashing (LSH) and to concomitant statistics, (5) introduces a new model, the Chorus of Relational Descriptors (ChoRD), that extends this framework to scene representation and interpretation, (6) describes its implementation and testing, and finally (7) suggests possible directions in which the present research program can be extended in the future

    Coronal loop detection from solar images and extraction of salient contour groups from cluttered images.

    Get PDF
    This dissertation addresses two different problems: 1) coronal loop detection from solar images: and 2) salient contour group extraction from cluttered images. In the first part, we propose two different solutions to the coronal loop detection problem. The first solution is a block-based coronal loop mining method that detects coronal loops from solar images by dividing the solar image into fixed sized blocks, labeling the blocks as Loop or Non-Loop , extracting features from the labeled blocks, and finally training classifiers to generate learning models that can classify new image blocks. The block-based approach achieves 64% accuracy in IO-fold cross validation experiments. To improve the accuracy and scalability, we propose a contour-based coronal loop detection method that extracts contours from cluttered regions, then labels the contours as Loop and Non-Loop , and extracts geometric features from the labeled contours. The contour-based approach achieves 85% accuracy in IO-fold cross validation experiments, which is a 20% increase compared to the block-based approach. In the second part, we propose a method to extract semi-elliptical open curves from cluttered regions. Our method consists of the following steps: obtaining individual smooth contours along with their saliency measures; then starting from the most salient contour, searching for possible grouping options for each contour; and continuing the grouping until an optimum solution is reached. Our work involved the design and development of a complete system for coronal loop mining in solar images, which required the formulation of new Gestalt perceptual rules and a systematic methodology to select and combine them in a fully automated judicious manner using machine learning techniques that eliminate the need to manually set various weight and threshold values to define an effective cost function. After finding salient contour groups, we close the gaps within the contours in each group and perform B-spline fitting to obtain smooth curves. Our methods were successfully applied on cluttered solar images from TRACE and STEREO/SECCHI to discern coronal loops. Aerial road images were also used to demonstrate the applicability of our grouping techniques to other contour-types in other real applications

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Perceptual Image Similarity Metrics and Applications.

    Full text link
    This dissertation presents research in perceptual image similarity metrics and applications, e.g., content-based image retrieval, perceptual image compression, image similarity assessment and texture analysis. The first part aims to design texture similarity metrics consistent with human perception. A new family of statistical texture similarity features, called Local Radius Index (LRI), and corresponding similarity metrics are proposed. Compared to state-of-the-art metrics in the STSIM family, LRI-based metrics achieve better texture retrieval performance with much less computation. When applied to the recently developed perceptual image coder, Matched Texture Coding (MTC), they enable similar performance while significantly accelerating encoding. Additionally, in photographic paper classification, LRI-based metrics also outperform pre-existing metrics. To fulfill the needs of texture classification and other applications, a rotation-invariant version of LRI, called Rotation-Invariant Local Radius Index (RI-LRI), is proposed. RI-LRI is also grayscale and illuminance insensitive. The corresponding similarity metric achieves texture classification accuracy comparable to state-of-the-art metrics. Moreover, its much lower dimensional feature vector requires substantially less computation and storage than other state-of-the-art texture features. The second part of the dissertation focuses on bilevel images, which are images whose pixels are either black or white. The contributions include new objective similarity metrics intended to quantify similarity consistent with human perception, and a subjective experiment to obtain ground truth for judging the performance of objective metrics. Several similarity metrics are proposed that outperform existing ones in the sense of attaining significantly higher Pearson and Spearman-rank correlations with the ground truth. The new metrics include Adjusted Percentage Error, Bilevel Gradient Histogram, Connected Components Comparison and combinations of such. Another portion of the dissertation focuses on the aforementioned MTC, which is a block-based image coder that uses texture similarity metrics to decide if blocks of the image can be encoded by pointing to perceptually similar ones in the already coded region. The key to its success is an effective texture similarity metric, such as an LRI-based metric, and an effective search strategy. Compared to traditional image compression algorithms, e.g., JPEG, MTC achieves similar coding rate with higher reconstruction quality. And the advantage of MTC becomes larger as coding rate decreases.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113586/1/yhzhai_1.pd

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    Image segmentation, evaluation, and applications

    Get PDF
    This thesis aims to advance research in image segmentation by developing robust techniques for evaluating image segmentation algorithms. The key contributions of this work are as follows. First, we investigate the characteristics of existing measures for supervised evaluation of automatic image segmentation algorithms. We show which of these measures is most effective at distinguishing perceptually accurate image segmentation from inaccurate segmentation. We then apply these measures to evaluating four state-of-the-art automatic image segmentation algorithms, and establish which best emulates human perceptual grouping. Second, we develop a complete framework for evaluating interactive segmentation algorithms by means of user experiments. Our system comprises evaluation measures, ground truth data, and implementation software. We validate our proposed measures by showing their correlation with perceived accuracy. We then use our framework to evaluate four popular interactive segmentation algorithms, and demonstrate their performance. Finally, acknowledging that user experiments are sometimes prohibitive in practice, we propose a method of evaluating interactive segmentation by algorithmically simulating the user interactions. We explore four strategies for this simulation, and demonstrate that the best of these produces results very similar to those from the user experiments
    corecore