946 research outputs found

    Perceptual model-based information hiding in audio signals

    Get PDF
    Audio data hiding is the process of embedding information into an audio signal so that the embedded information is inseparable from it and imperceptible to the listener. Information hiding is a multi- disciplinary area that combines signal processing with cryptography, communication theory, coding theory, information theory and the theory of human auditory and visual systems where information is hided within a host signal. A data hiding system should be robust, meaning that the embedded data could be decoded from the combined signal, even if it is distorted or attacked. This paper examines information hiding in speech signals. A perceptual modelbased information hiding in speech signal is developed

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Adjustment of interaural-time-difference analysis to sound level

    Get PDF
    To localize low-frequency sound sources in azimuth, the binaural system compares the timing of sound waves at the two ears with microsecond precision. A similarly high precision is also seen in the binaural processing of the envelopes of high-frequency complex sounds. Both for low- and high-frequency sounds, interaural time difference (ITD) acuity is to a large extent independent of sound level. The mechanisms underlying this level-invariant extraction of ITDs by the binaural system are, however, only poorly understood. We use high-frequency pip trains with asymmetric and dichotic pip envelopes in a combined psychophysical, electrophysiological, and modeling approach. Although the dichotic envelopes cannot be physically matched in terms of ITD, the match produced perceptually by humans is very reliable, and it depends systematically on the overall sound level. These data are reflected in neural responses from the gerbil lateral superior olive and lateral lemniscus. The results are predicted in an existing temporal-integration model extended with a level-dependent threshold criterion. These data provide a very sensitive quantification of how the peripheral temporal code is conditioned for binaural analysis

    Perceptually motivated blind source separation of convolutive audio mixtures

    Get PDF

    Forward masking threshold estimation using neural networks and its application to parallel speech enhancement

    Get PDF
    Forward masking models have been used successfully in speech enhancement and audio coding. Presently, forward masking thresholds are estimated using simplified masking models which have been used for audio coding and speech enhancement applications. In this paper, an accurate approximation of forward masking threshold estimation using neural networks is proposed. A performance comparison to the other existing masking models in speech enhancement application is presented. Objective measures using PESQ demonstrates that our proposed forward masking model, provides significant improvements (5-15 %) over four existing models, when tested with speech signals corrupted by various noises at very low signal to noise ratios. Moreover, a parallel implementation of the speech enhancement algorithm was developed using Matlab parallel computing toolbox

    Forward masking threshold estimation using neural networks and its application to parallel speech enhancement

    Get PDF
    Forward masking models have been used successfully in speech enhancement and audio coding. Presently, forward masking thresholds are estimated using simplified masking models which have been used for audio coding and speech enhancement applications. In this paper, an accurate approximation of forward masking threshold estimation using neural networks is proposed. A performance comparison to the other existing masking models in speech enhancement application is presented. Objective measures using PESQ demonstrates that our proposed forward masking model, provides significant improvements (5-15 %) over four existing models, when tested with speech signals corrupted by various noises at very low signal to noise ratios. Moreover, a parallel implementation of the speech enhancement algorithm was developed using Matlab parallel computing toolbox

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Auditory-inspired morphological processing of speech spectrograms: applications in automatic speech recognition and speech enhancement

    Get PDF
    New auditory-inspired speech processing methods are presented in this paper, combining spectral subtraction and two-dimensional non-linear filtering techniques originally conceived for image processing purposes. In particular, mathematical morphology operations, like erosion and dilation, are applied to noisy speech spectrograms using specifically designed structuring elements inspired in the masking properties of the human auditory system. This is effectively complemented with a pre-processing stage including the conventional spectral subtraction procedure and auditory filterbanks. These methods were tested in both speech enhancement and automatic speech recognition tasks. For the first, time-frequency anisotropic structuring elements over grey-scale spectrograms were found to provide a better perceptual quality than isotropic ones, revealing themselves as more appropriate—under a number of perceptual quality estimation measures and several signal-to-noise ratios on the Aurora database—for retaining the structure of speech while removing background noise. For the second, the combination of Spectral Subtraction and auditory-inspired Morphological Filtering was found to improve recognition rates in a noise-contaminated version of the Isolet database.This work has been partially supported by the Spanish Ministry of Science and Innovation CICYT Project No. TEC2008-06382/TEC.Publicad
    corecore