91 research outputs found

    VHDL Modeling of an H.264/AVC Video Decoder

    Get PDF
    Transmission and storage of video data has necessitated the development of video com pression techniques. One of today\u27s most widely used video compression techniques is the MPEG-2 standard, which is over ten years old. A task force sponsored by the same groups that developed MPEG-2 has recently finished defining a new standard that is meant to replace MPEG-2 for future video compression applications. This standard, H.264/AVC, uses significantly improved compression techniques. It is capable of providing similar pic ture quality at bit rates of 30-70% less than MPEG-2, depending on the particular video sequence and application [20]. This thesis developed a complete VHDL behavioral model of a video decoder imple menting the Baseline Profile of the H.264/AVC standard. The decoder was verified using a testing environment for comparison with reference software results. Development of a synthesizable hardware description was also shown for two components of the video de coder: the transform unit and the deblocking filter. This demonstrated how a complete video decoder could be developed one module at a time with individual module verifica tion. Analysis was also done to estimate the performance and hardware requirements for a complete implementation on an FPGA device

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Multi-Camera Platform for Panoramic Real-Time HDR Video Construction and Rendering

    Get PDF
    High dynamic range (HDR) images are usually obtained by capturing several images of the scene at different exposures. Previous HDR video techniques adopted the same principle by stacking HDR frames in time domain. We designed a new multi-camera platform which is able to construct and render HDR panoramic video in real-time, with 1024 × 256 resolution and a frame rate of 25 fps. We exploit the overlapping fields-of-view between the cameras with different exposures to create an HDR radiance map. We propose a method for HDR frame reconstruction which merges the previous HDR imaging techniques with the algorithms for panorama reconstruction. The developed FPGA-based processing system is able to reconstruct the HDR frame using the proposed method and tone map the resulting image using a hardware-adapted global operator. The measured throughput of the system is 245 MB/s, which is, up to our knowledge, among the fastest HDR video processing systems

    Propuesta de arquitectura y circuitos para la mejora del rango dinámico de sistemas de visión en un chip diseñados en tecnologías CMOS profundamente submicrométrica

    Get PDF
    El trabajo presentado en esta tesis trata de proponer nuevas técnicas para la expansión del rango dinámico en sensores electrónicos de imagen. En este caso, hemos dirigido nuestros estudios hacia la posibilidad de proveer dicha funcionalidad en un solo chip. Esto es, sin necesitar ningún soporte externo de hardware o software, formando un tipo de sistema denominado Sistema de Visión en un Chip (VSoC). El rango dinámico de los sensores electrónicos de imagen se define como el cociente entre la máxima y la mínima iluminación medible. Para mejorar este factor surgen dos opciones. La primera, reducir la mínima luz medible mediante la disminución del ruido en el sensor de imagen. La segunda, incrementar la máxima luz medible mediante la extensión del límite de saturación del sensor. Cronológicamente, nuestra primera opción para mejorar el rango dinámico se basó en reducir el ruido. Varias opciones se pueden tomar para mejorar la figura de mérito de ruido del sistema: reducir el ruido usando una tecnología CIS o usar circuitos dedicados, tales como calibración o auto cero. Sin embargo, el uso de técnicas de circuitos implica limitaciones, las cuales sólo pueden ser resueltas mediante el uso de tecnologías no estándar que están especialmente diseñadas para este propósito. La tecnología CIS utilizada está dirigida a la mejora de la calidad y las posibilidades del proceso de fotosensado, tales como sensibilidad, ruido, permitir imagen a color, etcétera. Para estudiar las características de la tecnología en más detalle, se diseñó un chip de test, lo cual permite extraer las mejores opciones para futuros píxeles. No obstante, a pesar de un satisfactorio comportamiento general, las medidas referentes al rango dinámico indicaron que la mejora de este mediante sólo tecnología CIS es muy limitada. Es decir, la mejora de la corriente oscura del sensor no es suficiente para nuestro propósito. Para una mayor mejora del rango dinámico se deben incluir circuitos dentro del píxel. No obstante, las tecnologías CIS usualmente no permiten nada más que transistores NMOS al lado del fotosensor, lo cual implica una seria restricción en el circuito a usar. Como resultado, el diseño de un sensor de imagen con mejora del rango dinámico en tecnologías CIS fue desestimado en favor del uso de una tecnología estándar, la cual da más flexibilidad al diseño del píxel. En tecnologías estándar, es posible introducir una alta funcionalidad usando circuitos dentro del píxel, lo cual permite técnicas avanzadas para extender el límite de saturación de los sensores de imagen. Para este objetivo surgen dos opciones: adquisición lineal o compresiva. Si se realiza una adquisición lineal, se generarán una gran cantidad de datos por cada píxel. Como ejemplo, si el rango dinámico de la escena es de 120dB al menos se necesitarían 20-bits/píxel, log2(10120/20)=19.93, para la representación binaria de este rango dinámico. Esto necesitaría de amplios recursos para procesar esta gran cantidad de datos, y un gran ancho de banda para moverlos al circuito de procesamiento. Para evitar estos problemas, los sensores de imagen de alto rango dinámico usualmente optan por utilizar una adquisición compresiva de la luz. Por lo tanto, esto implica dos tareas a realizar: la captura y la compresión de la imagen. La captura de la imagen se realiza a nivel de píxel, en el dispositivo fotosensor, mientras que la compresión de la imagen puede ser realizada a nivel de píxel, de sistema, o mediante postprocesado externo. Usando el postprocesado, existe un campo de investigación que estudia la compresión de escenas de alto rango dinámico mientras se mantienen los detalles, produciendo un resultado apropiado para la percepción humana en monitores convencionales de bajo rango dinámico. Esto se denomina Mapeo de Tonos (Tone Mapping) y usualmente emplea solo 8-bits/píxel para las representaciones de imágenes, ya que éste es el estándar para las imágenes de bajo rango dinámico. Los píxeles de adquisición compresiva, por su parte, realizan una compresión que no es dependiente de la escena de alto rango dinámico a capturar, lo cual implica una baja compresión o pérdida de detalles y contraste. Para evitar estas desventajas, en este trabajo, se presenta un píxel de adquisición compresiva que aplica una técnica de mapeo de tonos que permite la captura de imágenes ya comprimidas de una forma optimizada para mantener los detalles y el contraste, produciendo una cantidad muy reducida de datos. Las técnicas de mapeo de tonos ejecutan normalmente postprocesamiento mediante software en un ordenador sobre imágenes capturadas sin compresión, las cuales contienen una gran cantidad de datos. Estas técnicas han pertenecido tradicionalmente al campo de los gráficos por ordenador debido a la gran cantidad de esfuerzo computacional que requieren. Sin embargo, hemos desarrollado un nuevo algoritmo de mapeo de tonos especialmente adaptado para aprovechar los circuitos dentro del píxel y que requiere un reducido esfuerzo de computación fuera de la matriz de píxeles, lo cual permite el desarrollo de un sistema de visión en un solo chip. El nuevo algoritmo de mapeo de tonos, el cual es un concepto matemático que puede ser simulado mediante software, se ha implementado también en un chip. Sin embargo, para esta implementación hardware en un chip son necesarias algunas adaptaciones y técnicas avanzadas de diseño, que constituyen en sí mismas otra de las contribuciones de este trabajo. Más aún, debido a la nueva funcionalidad, se han desarrollado modificaciones de los típicos métodos a usar para la caracterización y captura de imágenes

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Low power data-dependent transform video and still image coding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 139-144).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.This work introduces the idea of data dependent video coding for low power. Algorithms for the Discrete Cosine Transform (DCT) and its inverse are introduced which exploit statistical properties of the input data in both the space and spatial frequency domains in order to minimize the total number of arithmetic operations. Two VLSI chips have been built as a proof-of-concept of data dependent processing implementing the DCT and its inverse (IDCT). The IDCT core processor exploits the presence of a large number of zerovalued spectral coefficients in the input stream when stimulated with MPEG-compressed video sequences. Adata-driven IDCT computation algorithm along with clock gating techniques are used to reduce the number of arithmetic operations for video inputs. The second chip is a DCT core processor that exhibits two innovative techniques for arithmetic operation reduction in the DCT computation context along with standard voltage scaling techniques such as pipelining and parallelism. The first method reduces the bitwidth of arithmetic operations in the presence of data spatial correlation. The second method trades off power dissipation and image compression quality (arithmetic precision.) Both chips are fully functional and exhibit the lowest switched capacitance per sample among past DCT/IDCT chips reported in the literature. Their power dissipation profile shows a strong dependence with certain statistical properties of the data that they operate on, according to the design goal.by Thucydides Xanthopoulos.Ph.D

    Low Latency Displays for Augmented Reality

    Get PDF
    The primary goal for Augmented Reality (AR) is bringing the real and virtual together into a common space. Maintaining this illusion, however, requires preserving spatially and temporally consistent registration despite changes in user or object pose. The greatest source of registration error is latency—the delay between when something moves and the display changes in response—which breaks temporal consistency. Furthermore, the real world varies greatly in brightness; ranging from bright sunlight to deep shadows. Thus, a compelling AR system must also support High-Dynamic Range (HDR) to maintain its virtual objects’ appearance both spatially and temporally consistent with the real world. This dissertation presents new methods, implementations, results (both visual and performance), and future steps for low latency displays, primarily in the context of Optical See-through Augmented Reality (OST-AR) Head-Mounted Displays, focusing on temporal consistency in registration, HDR color support, and spatial and temporal consistency in brightness: 1. For registration temporal consistency, the primary insight is breaking the conventional display paradigm: computers render imagery, frame by frame, and then transmit it to the display for emission. Instead, the display must also contribute towards rendering by performing a post-rendering, post-transmission warp of the computer-supplied imagery in the display hardware. By compensating in the display for system latency by using the latest tracking information, much of the latency can be short-circuited. Furthermore, the low latency display must support ultra-high frequency (multiple kHz) refreshing to minimize pose displacement between updates. 2. For HDR color support, the primary insight is developing new display modulation techniques. DMDs, a type of ultra-high frequency display, emit binary output, which require modulation to produce multiple brightness levels. Conventional modulation breaks low latency guarantees, and modulation of bright LEDs illuminators at frequencies to support kHz-order HDR exceeds their capabilities. Thus one must directly synthesize the necessary variation in brightness. 3. For spatial and temporal brightness consistency, the primary insight is integrating HDR light sensors into the display hardware: the same processes which both compensate for latency and generate HDR output can also modify it in response to the spatially sensed brightness of the real world.Doctor of Philosoph

    Video post processing architectures

    Get PDF

    Real-Time Computational Gigapixel Multi-Camera Systems

    Get PDF
    The standard cameras are designed to truthfully mimic the human eye and the visual system. In recent years, commercially available cameras are becoming more complex, and offer higher image resolutions than ever before. However, the quality of conventional imaging methods is limited by several parameters, such as the pixel size, lens system, the diffraction limit, etc. The rapid technological advancements, increase in the available computing power, and introduction of Graphics Processing Units (GPU) and Field-Programmable-Gate-Arrays (FPGA) open new possibilities in the computer vision and computer graphics communities. The researchers are now focusing on utilizing the immense computational power offered on the modern processing platforms, to create imaging systems with novel or significantly enhanced capabilities compared to the standard ones. One popular type of the computational imaging systems offering new possibilities is a multi-camera system. This thesis will focus on FPGA-based multi-camera systems that operate in real-time. The aim of themulti-camera systems presented in this thesis is to offer a wide field-of-view (FOV) video coverage at high frame rates. The wide FOV is achieved by constructing a panoramic image from the images acquired by the multi-camera system. Two new real-time computational imaging systems that provide new functionalities and better performance compared to conventional cameras are presented in this thesis. Each camera system design and implementation are analyzed in detail, built and tested in real-time conditions. Panoptic is a miniaturized low-cost multi-camera system that reconstructs a 360 degrees view in real-time. Since it is an easily portable system, it provides means to capture the complete surrounding light field in dynamic environment, such as when mounted on a vehicle or a flying drone. The second presented system, GigaEye II , is a modular high-resolution imaging system that introduces the concept of distributed image processing in the real-time camera systems. This thesis explains in detail howsuch concept can be efficiently used in real-time computational imaging systems. The purpose of computational imaging systems in the form of multi-camera systems does not end with real-time panoramas. The application scope of these cameras is vast. They can be used in 3D cinematography, for broadcasting live events, or for immersive telepresence experience. The final chapter of this thesis presents three potential applications of these systems: object detection and tracking, high dynamic range (HDR) imaging, and observation of multiple regions of interest. Object detection and tracking, and observation of multiple regions of interest are extremely useful and desired capabilities of surveillance systems, in security and defense industry, or in the fast-growing industry of autonomous vehicles. On the other hand, high dynamic range imaging is becoming a common option in the consumer market cameras, and the presented method allows instantaneous capture of HDR videos. Finally, this thesis concludes with the discussion of the real-time multi-camera systems, their advantages, their limitations, and the future predictions

    Application-aware optimization of Artificial Intelligence for deployment on resource constrained devices

    Get PDF
    Artificial intelligence (AI) is changing people's everyday life. AI techniques such as Deep Neural Networks (DNN) rely on heavy computational models, which are in principle designed to be executed on powerful HW platforms, such as desktop or server environments. However, the increasing need to apply such solutions in people's everyday life has encouraged the research for methods to allow their deployment on embedded, portable and stand-alone devices, such as mobile phones, which exhibit relatively low memory and computational resources. Such methods targets both the development of lightweight AI algorithms and their acceleration through dedicated HW. This thesis focuses on the development of lightweight AI solutions, with attention to deep neural networks, to facilitate their deployment on resource constrained devices. Focusing on the computer vision field, we show how putting together the self learning ability of deep neural networks with application-specific knowledge, in the form of feature engineering, it is possible to dramatically reduce the total memory and computational burden, thus allowing the deployment on edge devices. The proposed approach aims to be complementary to already existing application-independent network compression solutions. In this work three main DNN optimization goals have been considered: increasing speed and accuracy, allowing training at the edge, and allowing execution on a microcontroller. For each of these we deployed the resulting algorithm to the target embedded device and measured its performance
    corecore