39,851 research outputs found

    Video Quality Assessment: Exploring the Impact of Frame Rate

    Get PDF
    Technology advancements in the past decades has led to an immense increase in data traffic over various networks. Videos constitute a major percentage of this traffic and their share is projected to increase at an accelerating speed in the coming years. Service providers aim to deliver videos that have high quality while at the same time keeping the data rate as low as possible. Effective and efficient objective Video Quality Assessment~(VQA) algorithms are essential in order to provide real time estimate of video quality so that the best compromise between data rate and quality can be achieved. Data rate of video transmission can be altered by controlling different parameters of the video, among which frame rate is one of the most important parameters. So far, only limited works have been done to study the impact of frame rate variations on video quality. The purpose of this work is to investigate the impact of varying frame rate on the quality of videos and to develop novel VQA models that integrate frame rate variations into the task of quality assessment. In order to achieve this goal, we first construct two new video databases that contain videos of diverse content, and spatial and temporal resolutions. We carry out subjective studies on these databases to obtain human opinions on video quality. The subjective study allows us to evaluate the performance of well known objective VQA algorithms on cross-frame rate videos. The results reveal that there is considerable disparity between the subjective scores and the predictions from state-of-the-art objective models that do not take frame rate into consideration. We explore statistical models for video quality analysis. In particular, we conduct cross-frame local phase statistical analysis, which provides new insights on video motion smoothness as an important factor that affects video quality across different frame rates. Our evaluations of the proposed motion smoothness metric using the subject-rated databases show that this novel measure provides a new means to capture the impact of frame rate on video quality, and demonstrates strong promise at improving the performance of objective video quality assessment models. We also propose the notions of perceptual temporal aliasing factor and perceptual spatiotemporal aliasing factor to incorporate the characteristics of human visual contrast sensitivity variations into the framework of spatial and temporal aliasing analysis. We incorporate the proposed aliasing factors into the VQA process to predict the quality of video under frame rate change, resolution change, and lossy compression. Our performance evaluation using the subjective database shows that the proposed perceptual aliasing factors are strong quality predictors across-frame rate, resolution, and data rate, significantly outperforming baseline VQA methods without aliasing modeling

    Toward Generalized Psychovisual Preprocessing For Video Encoding

    Get PDF
    Deep perceptual preprocessing has recently emerged as a new way to enable further bitrate savings across several generations of video encoders without breaking standards or requiring any changes in client devices. In this article, we lay the foundation for a generalized psychovisual preprocessing framework for video encoding and describe one of its promising instantiations that is practically deployable for video-on-demand, live, gaming, and user-generated content (UGC). Results using state-of-the-art advanced video coding (AVC), high efficiency video coding (HEVC), and versatile video coding (VVC) encoders show that average bitrate [Bjontegaard delta-rate (BD-rate)] gains of 11%-17% are obtained over three state-of-the-art reference-based quality metrics [Netflix video multi-method assessment fusion (VMAF), structural similarity index (SSIM), and Apple advanced video quality tool (AVQT)], as well as the recently proposed nonreference International Telecommunication Union-Telecommunication?(ITU-T) P.1204 metric. The proposed framework on CPU is shown to be twice faster than × 264 medium-preset encoding. On GPU hardware, our approach achieves 714 frames/sec for 1080p video (below 2 ms/frame), thereby enabling its use in very-low-latency live video or game streaming applications

    Video streaming

    Get PDF

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality
    corecore