1,456 research outputs found

    Region of interest-based adaptive multimedia streaming scheme

    Get PDF
    Adaptive multimedia streaming aims at adjusting the transmitted content based on the available bandwidth such as losses that often severely affect the end-user perceived quality are minimized and consequently the transmission quality increases. Current solutions affect equally the whole viewing area of the multimedia frames, despite research showing that there are regions on which the viewers are more interested in than on others. This paper presents a novel region of interest-based adaptive scheme (ROIAS) for multimedia streaming that when performing transmission-related quality adjustments, selectively affects the quality of those regions of the image the viewers are the least interested in. As the quality of the regions the viewers are the most interested in will not change (or will involve little change),the proposed scheme provides higher overall end-user perceived quality than any of the existing adaptive solutions

    Defining user perception of distributed multimedia quality

    Get PDF
    This article presents the results of a study that explored the human side of the multimedia experience. We propose a model that assesses quality variation from three distinct levels: the network, the media and the content levels; and from two views: the technical and the user perspective. By facilitating parameter variation at each of the quality levels and from each of the perspectives, we were able to examine their impact on user quality perception. Results show that a significant reduction in frame rate does not proportionally reduce the user's understanding of the presentation independent of technical parameters, that multimedia content type significantly impacts user information assimilation, user level of enjoyment, and user perception of quality, and that the device display type impacts user information assimilation and user perception of quality. Finally, to ensure the transfer of information, low-level abstraction (network-level) parameters, such as delay and jitter, should be adapted; to maintain the user's level of enjoyment, high-level abstraction quality parameters (content-level), such as the appropriate use of display screens, should be adapted

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality

    Perceptual attention focus prediction for multiple viewers in case of multimedia perceptual compression with feedback delay

    Full text link

    VIDEO PREPROCESSING BASED ON HUMAN PERCEPTION FOR TELESURGERY

    Get PDF
    Video transmission plays a critical role in robotic telesurgery because of the high bandwidth and high quality requirement. The goal of this dissertation is to find a preprocessing method based on human visual perception for telesurgical video, so that when preprocessed image sequences are passed to the video encoder, the bandwidth can be reallocated from non-essential surrounding regions to the region of interest, ensuring excellent image quality of critical regions (e.g. surgical region). It can also be considered as a quality control scheme that will gracefully degrade the video quality in the presence of network congestion. The proposed preprocessing method can be separated into two major parts. First, we propose a time-varying attention map whose value is highest at the gazing point and falls off progressively towards the periphery. Second, we propose adaptive spatial filtering and the parameters of which are adjusted according to the attention map. By adding visual adaptation to the spatial filtering, telesurgical video data can be compressed efficiently because of the high degree of visual redundancy removal by our algorithm. Our experimental results have shown that with the proposed preprocessing method, over half of the bandwidth can be reduced while there is no significant visual effect for the observer. We have also developed an optimal parameter selecting algorithm, so that when the network bandwidth is limited, the overall visual distortion after preprocessing is minimized

    QoE for Mobile Streaming

    Get PDF
    No abstract

    Dynamic adaptation of streamed real-time E-learning videos over the internet

    Get PDF
    Even though the e-learning is becoming increasingly popular in the academic environment, the quality of synchronous e-learning video is still substandard and significant work needs to be done to improve it. The improvements have to be brought about taking into considerations both: the network requirements and the psycho- physical aspects of the human visual system. One of the problems of the synchronous e-learning video is that the head-and-shoulder video of the instructor is mostly transmitted. This video presentation can be made more interesting by transmitting shots from different angles and zooms. Unfortunately, the transmission of such multi-shot videos will increase packet delay, jitter and other artifacts caused by frequent changes of the scenes. To some extent these problems may be reduced by controlled reduction of the quality of video so as to minimise uncontrolled corruption of the stream. Hence, there is a need for controlled streaming of a multi-shot e-learning video in response to the changing availability of the bandwidth, while utilising the available bandwidth to the maximum. The quality of transmitted video can be improved by removing the redundant background data and utilising the available bandwidth for sending high-resolution foreground information. While a number of schemes exist to identify and remove the background from the foreground, very few studies exist on the identification and separation of the two based on the understanding of the human visual system. Research has been carried out to define foreground and background in the context of e-learning video on the basis of human psychology. The results have been utilised to propose methods for improving the transmission of e-learning videos. In order to transmit the video sequence efficiently this research proposes the use of Feed- Forward Controllers that dynamically characterise the ongoing scene and adjust the streaming of video based on the availability of the bandwidth. In order to satisfy a number of receivers connected by varied bandwidth links in a heterogeneous environment, the use of Multi-Layer Feed-Forward Controller has been researched. This controller dynamically characterises the complexity (number of Macroblocks per frame) of the ongoing video sequence and combines it with the knowledge of availability of the bandwidth to various receivers to divide the video sequence into layers in an optimal way before transmitting it into network. The Single-layer Feed-Forward Controller inputs the complexity (Spatial Information and Temporal Information) of the on-going video sequence along with the availability of bandwidth to a receiver and adjusts the resolution and frame rate of individual scenes to transmit the sequence optimised to give the most acceptable perceptual quality within the bandwidth constraints. The performance of the Feed-Forward Controllers have been evaluated under simulated conditions and have been found to effectively regulate the streaming of real-time e-learning videos in order to provide perceptually improved video quality within the constraints of the available bandwidth
    corecore