119 research outputs found

    A robust image watermarking technique based on quantization noise visibility thresholds

    Get PDF
    International audienceA tremendous amount of digital multimedia data is broadcasted daily over the internet. Since digital data can be very quickly and easily duplicated, intellectual property right protection techniques have become important and first appeared about fifty years ago (see [I.J. Cox, M.L. Miller, The First 50 Years of Electronic Watermarking, EURASIP J. Appl. Signal Process. 2 (2002) 126-132. [52]] for an extended review). Digital watermarking was born. Since its inception, many watermarking techniques have appeared, in all possible transformed spaces. However, an important lack in watermarking literature concerns the human visual system models. Several human visual system (HVS) model based watermarking techniques were designed in the late 1990's. Due to the weak robustness results, especially concerning geometrical distortions, the interest in such studies has reduced. In this paper, we intend to take advantage of recent advances in HVS models and watermarking techniques to revisit this issue. We will demonstrate that it is possible to resist too many attacks, including geometrical distortions, in HVS based watermarking algorithms. The perceptual model used here takes into account advanced features of the HVS identified from psychophysics experiments conducted in our laboratory. This model has been successfully applied in quality assessment and image coding schemes M. Carnec, P. Le Callet, D. Barba, An image quality assessment method based on perception of structural information, IEEE Internat. Conf. Image Process. 3 (2003) 185-188, N. Bekkat, A. Saadane, D. Barba, Masking effects in the quality assessment of coded images, in: SPIE Human Vision and Electronic Imaging V, 3959 (2000) 211-219. In this paper the human visual system model is used to create a perceptual mask in order to optimize the watermark strength. The optimal watermark obtained satisfies both invisibility and robustness requirements. Contrary to most watermarking schemes using advanced perceptual masks, in order to best thwart the de-synchronization problem induced by geometrical distortions, we propose here a Fourier domain embedding and detection technique optimizing the amplitude of the watermark. Finally, the robustness of the scheme obtained is assessed against all attacks provided by the Stirmark benchmark. This work proposes a new digital rights management technique using an advanced human visual system model that is able to resist various kind of attacks including many geometrical distortions

    HDR Image Watermarking

    Get PDF
    In this Chapter we survey available solutions for HDR image watermarking. First, we briefly discuss watermarking in general terms, with particular emphasis on its requirements that primarily include security, robustness, imperceptibility, capacity and the availability of the original image during recovery. However, with respect to traditional image watermarking, HDR images possess a unique set of features such as an extended range of luminance values to work with and tone-mapping operators against whom it is essential to be robust. These clearly affect the HDR watermarking algorithms proposed in the literature, which we extensively review next, including a thorough analysis of the reported experimental results. As a working example, we also describe the HDR watermarking system that we recently proposed and that focuses on combining imperceptibility, security and robustness to TM operators at the expense of capacity. We conclude the chapter with a critical analysis of the current state and future directions of the watermarking applications in the HDR domain

    The collaboration of noise reduction and human vision system models for a visible watermarking algorithm

    Get PDF
    ABSTRACT A novel visible watermarking algorithm based on noise reduction and Human Visible System (HVS) model approach is presented in this study. In order to get the best tradeoff between the embedding energy of watermark and the perceptual translucence for visible watermark, the composite coefficients using global and local characteristics of the host image in the discrete wavelet transform (DWT) domain is considered. The application of the perceptual model of contrast-sensitive function (CSF) with the noise reduction of the visibility thresholds for HVS in DWT domain achieves the goal of fine tuning of the perceptual weights according to the basis function amplitudes for the best quality of perceptual translucence. Instead of three types of block classification-textures, edges and smooth areas, the computation of Noise Visibility Function (NVF) characterizes the local image properties to determine the optimal watermark locations and strength at the watermark embedding stage. The experimental results demonstrate that the proposed technique improves the PSNR values and visual quality than the CSF only based algorithms

    High Dynamic Range Image Watermarking Robust Against Tone-Mapping Operators

    Get PDF
    High dynamic range (HDR) images represent the future format for digital images since they allow accurate rendering of a wider range of luminance values. However, today special types of preprocessing, collectively known as tone-mapping (TM) operators, are needed to adapt HDR images to currently existing displays. Tone-mapped images, although of reduced dynamic range, have nonetheless high quality and hence retain some commercial value. In this paper, we propose a solution to the problem of HDR image watermarking, e.g., for copyright embedding, that should survive TM. Therefore, the requirements imposed on the watermark encompass imperceptibility, a certain degree of security, and robustness to TM operators. The proposed watermarking system belongs to the blind, detectable category; it is based on the quantization index modulation (QIM) paradigm and employs higher order statistics as a feature. Experimental analysis shows positive results and demonstrates the system effectiveness with current state-of-art TM algorithms

    Reversible color video watermarking scheme based on hybrid of integer-to-integer wavelet transform and Arnold transform

    Get PDF
    Unauthorized redistribution and illegal copying of digital contents are serious issues which have affected numerous types of digital contents such as digital video. One of the methods, which have been suggested to support copyright protection, is to hide digital watermark within the digital video. This paper introduces a new video watermarking system which based on a combination of Arnold transform and integer wavelet transforms (IWT). IWT is employed to decompose the cover video frames whereby Arnold transform is used to scramble the watermark which is a grey scale image. Scrambling the watermark before the concealment makes the transmission more secure by disordering the information. The system performance was benchmarked against related video watermarking schemes, in which the evaluation processes consist of testing against several video operations and attacks. Consequently, the scheme has been demonstrated to be perfectly robust

    A Hybrid Digital Watermarking Approach Using Wavelets and LSB

    Get PDF
    The present paper proposed a novel approach called Wavelet based Least Significant Bit Watermarking (WLSBWM) for high authentication, security and copyright protection. Alphabet Pattern (AP) approach is used to generate shuffled image in the first stage and Pell’s Cat Map (PCM) is used for providing more security and strong protection from attacks. PCM applied on each 5×5 sub images. A wavelet concept is used to reduce the dimensionality of the image until it equals to the size of the watermark image. Discrete Cosign Transform is applied in the first stage; later N level Discrete Wavelet Transform (DWT) is applied for reducing up to the size of the watermark image. The water mark image is inserted in LHn Sub band of the wavelet image using LSB concept. Simulation results show that the proposed technique produces better PSNR and similarity measure. The experimental results indicate that the present approach is more reliable and secure efficient.The robustness of the proposed scheme is evaluated against various image-processing attacks

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented
    corecore