3,882 research outputs found

    What is Virtual Light?

    Full text link

    The 3D Acid Test: Perceptual Attributes vs Renderable Elements

    Get PDF
    The Romantics artificially embellished light and colour to convey emotion in their artworks. Light and colour were used to ignite a sense of enchantment and to stir an emotional response from the viewer. 3D software operates within this established visual tradition: current digital artistic representation involves a similarly embellished reality. This is a testament to what we continually want to see and how we would like to be visually entertained and informed, and physically based 3D renderer Arnold provides the tools for this continuation. Inherent in the world’s most-used 3D rendering programme Arnold are light and surface attributes which have been programmed to be adjustable to achieve myriad visual results. These attributes, however, have a history rooted in computer graphics’ plight for realism by abiding by the laws of optics and physics in their creation. However, these tools were designed with an arbitrarily chosen set of limits: arbitrary in the sense that these limits define a range of possibility to be used conveniently by the artist rather than by necessity or intrinsic nature. Johann Goethe (b. 1749), a Romantic poet, was critical of how light and colour were used by his artistic peers. He was dissatisfied by the embellishment of light and colour in paintings, and endeavoured to know exactly what was happening when he looked at things. Goethe conducted a series of experiments on light and colour, which resulted in his book Theory of Colours (1810, trans. Charles Eastlake, 1840). In my study, using Theory of Colours as a guideline, I have recreated fifty of Goethe’s experiments in 3D. I explore the fundamentals of Arnold as it was created, revealing the benchmark of current achievable 3D realism. Ten of these experiments are discussed in this paper. These experiments, in my judgment, are more applicable to the scope of phenomena replicable with a renderer, and scale the vast number of Goethe’s experiments in Theory of Colours to a reasonable set of testable conditions. The human perception of reality is the baseline against which rendering qualities must be judged, and Goethe’s experiments are replicable. As an instructor of 3D rendering, I aim to instill in my students the knowledge gained from this study, with the intention to empower the students with their own rendering so that they may make informed, predictable decisions

    An Empirical Evaluation of Visual Cues for 3D Flow Field Perception

    Get PDF
    Three-dimensional vector fields are common datasets throughout the sciences. They often represent physical phenomena that are largely invisible to us in the real world, like wind patterns and ocean currents. Computer-aided visualization is a powerful tool that can represent data in any way we choose through digital graphics. Visualizing 3D vector fields is inherently difficult due to issues such as visual clutter, self-occlusion, and the difficulty of providing depth cues that adequately support the perception of flow direction in 3D space. Cutting planes are often used to overcome these issues by presenting slices of data that are more cognitively manageable. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. The most valuable depth cue for the perception of other kinds of 3D data, notably 3D networks and 3D point clouds, is structure-from-motion (also called the Kinetic Depth Effect); another powerful depth cue is stereoscopic viewing, but none of these cues have been fully examined in the context of flow visualization. This dissertation presents a series of quantitative human factors studies that evaluate depth and direction cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The results of the studies are distilled into a set of design guidelines to improve the effectiveness of 3D flow field visualizations, and those guidelines are implemented as an immersive, interactive 3D flow visualization proof-of-concept application

    Illuminating palaeolithic art using virtual reality: A new method for integrating dynamic firelight into interpretations of art production and use

    Get PDF
    Approaches to Palaeolithic art have increasingly shifted beyond the traditional focus on engraved or depicted forms in isolation, to appreciating the sensorial experience of art making as integral to shaping the form of depictions and the meaning imbued within them. This kind of research appreciates an array of factors pertinent to how the art may have been understood or experienced by people during the Palaeolithic, including placement, lighting, accessibility, sound, and tactility. This paper contributes to this “sensory turn” in Palaeolithic art research, arguing that the roving light cast by the naked flame of fires, torches or lamps is an important dimension in understanding artistic experiences. However, capturing these effects, whether during analysis, as part of interpretation, or presentation, can be challenging. A new method is presented in virtual reality (VR) modelling – applied to Palaeolithic art contexts for the first time - as a safe and non-destructive means of simulating dynamic light sources to facilitate analysis, interpretation, and presentation of Palaeolithic art under actualistic lighting conditions. VR was applied to two Magdalenian case studies: parietal art from Las Monedas (Spain) and portable stone plaquettes from Montastruc (France). VR models were produced using Unity software and digital models of the art captured via whitelight (Montastruc) and photogrammetric (Las Monedas) scans. The results demonstrate that this novel application of VR facilitates the testing of hypotheses related to the sensorial and experiential dimensions of Palaeolithic art, allowing discussions of these elements to be elevated beyond theoretical ideas

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    Auditory-visual interaction in computer graphics

    Get PDF
    Generating high-fidelity images in real-time at reasonable frame rates, still remains one of the main challenges in computer graphics. Furthermore, visuals remain only one of the multiple sensory cues that are required to be delivered simultaneously in a multi-sensory virtual environment. The most frequently used sense, besides vision, in virtual environments and entertainment, is audio. While the rendering community focuses on solving the rendering equation more quickly using various algorithmic and hardware improvements, the exploitation of human limitations to assist in this process remain largely unexplored. Many findings in the research literature prove the existence of physical and psychological limitations of humans, including attentional, perceptual and limitations of the Human Sensory System (HSS). Knowledge of the Human Visual System (HVS) may be exploited in computer graphics to significantly reduce rendering times without the viewer being aware of any resultant image quality difference. Furthermore, cross-modal effects, that is the influence of one sensory input on another, for example sound and visuals, have also recently been shown to have a substantial impact on viewer perception of virtual environment. In this thesis, auditory-visual cross-modal interaction research findings have been investigated and adapted to graphics rendering purposes. The results from five psychophysical experiments, involving 233 participants, showed that, even in the realm of computer graphics, there is a strong relationship between vision and audition in both spatial and temporal domains. The first experiment, investigating the auditory-visual cross-modal interaction within spatial domain, showed that unrelated sound effects reduce perceived rendering quality threshold. In the following experiments, the effect of audio on temporal visual perception was investigated. The results obtained indicate that audio with certain beat rates can be used in order to reduce the amount of rendering required to achieve a perceptual high quality. Furthermore, introducing the sound effect of footsteps to walking animations increased the visual smoothness perception. These results suggest that for certain conditions the number of frames that need to be rendered each second can be reduced, saving valuable computation time, without the viewer being aware of this reduction. This is another step towards a comprehensive understanding of auditory-visual cross-modal interaction and its use in high-fidelity interactive multi-sensory virtual environments

    Structure evaluation of computer human animation quality

    Get PDF
    The University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyThis work will give a wide survey for various techniques that are present in the field of character computer animation, which concentrates particularly on those techniques and problems involved in the production of realistic character synthesis and motion. A preliminary user study (including Questionnaire, online publishing such as flicker.com, interview, multiple choice questions, publishing on Android mobile phone, and questionnaire analysis, validation, statistical evaluation, design steps and Character Animation Observation) was conducted to explore design questions, identify users' needs, and obtain a "true story" of quality character animation and the effect of using animation as useful tools in Education. The first set of questionnaires were designed to accommodate the evaluation of animation from candidates from different walks of life, ranging from animators, gamers, teacher assistances (TA), students, teaches, professionals and researchers using and evaluating pre-prepared animated character videos scenarios, and the study outcomes has reviewed the recent advances techniques of character animation, motion editing that enable the control of complex animations by interactively blending, improving and tuning artificial or captured motions. The goal of this work was to augment the students learning intuition by providing ways to make education and learning more interesting, useful and fun objectively, in order to improve students’ respond and understanding to any subject area through the use of animation also by producing the required high quality motion, reaction, interaction and story board to viewers of the motion. We present a variety of different evaluation to the motion quality by measuring user sensitivity, observations to any noticeable artefact, usability, usefulness etc. to derive clear useful guidelines from the results, and discuss several interesting systematic trends we have uncovered in the experimental data. We also present an efficient technique for evaluating the capability of animation influence on education to fulfil the requirements of a given scenario, along with the advantages and the effect on those deficiencies of some methods commonly used to improve animation quality to serve the learning process. Finally, we propose a wide range of extensions and statistical calculation enabled by these evaluation tools, such as Wilcoxon, F-test, T-test, Wondershare Quiz creator (WQC), Chi square and many others explained with full details

    Perceptions and dimensions: towards a stereoscopic choreography

    Full text link
    This research explored the use of 3Dstereoscopic illusions in live dance performance. It examined the practical and philosophical implications of using stereoscopic projection technologies and 3D animated objects as dynamic, interactive components of a choreographic practice.<br /

    Perceptually-motivated, interactive rendering and editing of global illumination

    Get PDF
    This thesis proposes several new perceptually-motivated techniques to synthesize, edit and enhance depiction of three-dimensional virtual scenes. Finding algorithms that fit the perceptually economic middle ground between artistic depiction and full physical simulation is the challenge taken in this work. First, we will present three interactive global illumination rendering approaches that are inspired by perception to efficiently depict important light transport. Those methods have in common to compute global illumination in large and fully dynamic scenes allowing for light, geometry, and material changes at interactive or real-time rates. Further, this thesis proposes a tool to edit reflections, that allows to bend physical laws to match artistic goals by exploiting perception. Finally, this work contributes a post-processing operator that depicts high contrast scenes in the same way as artists do, by simulating it "seen'; through a dynamic virtual human eye in real-time.Diese Arbeit stellt eine Anzahl von Algorithmen zur Synthese, Bearbeitung und verbesserten Darstellung von virtuellen drei-dimensionalen Szenen vor. Die Herausforderung liegt dabei in der Suche nach Ausgewogenheit zwischen korrekter physikalischer Berechnung und der künstlerischen, durch die Gesetze der menschlichen Wahrnehmung motivierten Praxis. Zunächst werden drei Verfahren zur Bild-Synthese mit globaler Beleuchtung vorgestellt, deren Gemeinsamkeit in der effizienten Handhabung großer und dynamischer virtueller Szenen liegt, in denen sich Geometrie, Materialen und Licht frei verändern lassen. Darauffolgend wird ein Werkzeug zum Editieren von Reflektionen in virtuellen Szenen das die menschliche Wahrnehmung ausnutzt um künstlerische Vorgaben umzusetzen, vorgestellt. Die Arbeit schließt mit einem Filter am Ende der Verarbeitungskette, der den wahrgenommen Kontrast in einem Bild erhöht, indem er die Entstehung von Glanzeffekten im menschlichen Auge nachbildet
    • …
    corecore