219 research outputs found

    Review: Object vision in a structured world

    Get PDF
    In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world

    The Impact of Shape on the Perception of Euler Diagrams

    Get PDF
    Euler diagrams are often used for visualizing data collected into sets. However, there is a significant lack of guidance regarding graphical choices for Euler diagram layout. To address this deficiency, this paper asks the question `does the shape of a closed curve affect a user's comprehension of an Euler diagram?' By empirical study, we establish that curve shape does indeed impact on understandability. Our analysis of performance data indicates that circles perform best, followed by squares, with ellipses and rectangles jointly performing worst. We conclude that, where possible, circles should be used to draw effective Euler diagrams. Further, the ability to discriminate curves from zones and the symmetry of the curve shapes is argued to be important. We utilize perceptual theory to explain these results. As a consequence of this research, improved diagram layout decisions can be made for Euler diagrams whether they are manually or automatically drawn

    Object Vision in a Structured World

    Get PDF
    In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world

    Integration and Segmentation Conflict During Ensemble Coding of Aspect Ratio

    Get PDF
    The visual system often integrates information that goes together . Once information has been integrated, summary information (e.g., average emotion or average size) can be extracted; this occurs during ensemble coding. Integration thus allows for fast and efficient generalizations about sets to be made. In contrast, the visual system sometimes segments input that does not go together. For example, the perception of objects can be exaggerated away from natural category boundaries (e.g., a perfect circle is a category boundary; it is neither flat nor tall ). Segmentation allows the visual system to make quick categorical distinctions. Much of the time, integration and segmentation work in parallel, and they have most often been studied in isolation. However, investigating how these two processes operate together, and potentially even conflict, was the purpose of this dissertation. I examined the ensemble coding of aspect ratio, which is a visual feature roughly equivalent to tallness/flatness . Aspect ratio has a category boundary (e.g., a circle or square), and the perception of aspect ratio tends to be exaggerated -segmented - away from that boundary. Thus, I predicted that observers\u27 ability to integrate aspect ratio information that spanned the category boundary would be disrupted, since in those instances, integration and segmentation would be at odds. To test this prediction, observers were asked about the average aspect ratio of a set of ellipses. In two experiments, observers were less sensitive to the mean of sets that included both tall and flat ellipses, compared to sets that only included tall or flat ellipses. A third experiment confirmed that segmentation perceptually distorted the appearance of ellipses near the category boundary away from that boundary; shapes were perceived to be more extreme than they actually were. Segmentation thus made sets that included both flat and tall ellipses appear more heterogeneous than they really were, which disrupted ensemble coding. In general, these experiments provide a deeper understanding of how the visual system summarizes large sets of information, by investigating how integration interacts with, and even conflicts with, segmentation

    The State-of-the-Art of Set Visualization

    Get PDF
    Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net
    corecore