6,105 research outputs found

    Using Texture Vector Analysis to Measure Computer and Device File Similarity

    Get PDF
    Executable programs run on computers and digital devices. These programs are pre-installed by the device vendor or are downloaded or copied from a storage media. It is useful to study file similarity between executable files to verify valid updates, identify potential copyright infringement, identify malware, and detect other abuse of purchased software. An alternative to relying on simplistic methods of file comparison, such as comparing their hash codes to see if they are identical, is to identify the "texture" of files and then assess its similarity between files. To test this idea, we experimented with a sample of 23 Windows executable file families and 1,386 files. We identify points of similarity between files by comparing sections of data in their standard deviations, means, modes, mode counts, and entropies. When vectors are sufficiently similar, we calculate the offsets (shifts) between the sections to get them to align. Using analysis on these shifts, we can measure file similarity efficiently. By plotting similarity vs. time, we track the progression of similarity between files.Prepared for the Naval Postgraduate School, Monterey, CA 93943.Naval Postgraduate SchoolApproved for public release; distribution is unlimited.Approved for public release; distribution is unlimited

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network

    Get PDF
    In many domestic and military applications, aerial vehicle detection and super-resolutionalgorithms are frequently developed and applied independently. However, aerial vehicle detection on super-resolved images remains a challenging task due to the lack of discriminative information in the super-resolved images. To address this problem, we propose a Joint Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to generate discriminative, high-resolution images of vehicles fromlow-resolution aerial images. First, aerial images are up-scaled by a factor of 4x using a Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple intermediate outputs with increasingresolutions. Second, a detector is trained on super-resolved images that are upscaled by factor 4x usingMsGAN architecture and finally, the detection loss is minimized jointly with the super-resolution loss toencourage the target detector to be sensitive to the subsequent super-resolution training. The network jointlylearns hierarchical and discriminative features of targets and produces optimal super-resolution results. Weperform both quantitative and qualitative evaluation of our proposed network on VEDAI, xView and DOTAdatasets. The experimental results show that our proposed framework achieves better visual quality than thestate-of-the-art methods for aerial super-resolution with 4x up-scaling factor and improves the accuracy ofaerial vehicle detection
    • …
    corecore