654 research outputs found

    JND-Based Perceptual Video Coding for 4:4:4 Screen Content Data in HEVC

    Get PDF
    The JCT-VC standardized Screen Content Coding (SCC) extension in the HEVC HM RExt + SCM reference codec offers an impressive coding efficiency performance when compared with HM RExt alone; however, it is not significantly perceptually optimized. For instance, it does not include advanced HVS-based perceptual coding methods, such as JND-based spatiotemporal masking schemes. In this paper, we propose a novel JND-based perceptual video coding technique for HM RExt + SCM. The proposed method is designed to further improve the compression performance of HM RExt + SCM when applied to YCbCr 4:4:4 SC video data. In the proposed technique, luminance masking and chrominance masking are exploited to perceptually adjust the Quantization Step Size (QStep) at the Coding Block (CB) level. Compared with HM RExt 16.10 + SCM 8.0, the proposed method considerably reduces bitrates (Kbps), with a maximum reduction of 48.3%. In addition to this, the subjective evaluations reveal that SC-PAQ achieves visually lossless coding at very low bitrates.Comment: Preprint: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    JPEG steganography: A performance evaluation of quantization tables

    Get PDF
    The two most important aspects of any image based steganographic system are the imperceptibility and the capacity of the stego image. This paper evaluates the performance and efficiency of using optimized quantization tables instead of default JPEG tables within JPEG steganography. We found that using optimized tables significantly improves the quality of stego-images. Moreover, we used this optimization strategy to generate a 16x16 quantization table to be used instead of that suggested. The quality of stego-images was greatly improved when these optimized tables were used. This led us to suggest a new hybrid steganographic method in order to increase the embedding capacity. This new method is based on both and Jpeg-Jsteg methods. In this method, for each 16x16 quantized DCT block, the least two significant bits (2-LSBs) of each middle frequency coefficient are modified to embed two secret bits. Additionally, the Jpeg-Jsteg embedding technique is used for the low frequency DCT coefficients without modifying the DC coefficient. Our experimental results show that the proposed approach can provide a higher information-hiding capacity than the other methods tested. Furthermore, the quality of the produced stego-images is better than that of other methods which use the default tables

    Image Data Compression Having Minimum Perceptual Error

    Get PDF
    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error

    A visual detection model for DCT coefficient quantization

    Get PDF
    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201
    • …
    corecore