150 research outputs found

    Perceptual Video Hashing for Content Identification and Authentication

    Get PDF
    Perceptual hashing has been broadly used in the literature to identify similar contents for video copy detection. It has also been adopted to detect malicious manipulations for video authentication. However, targeting both applications with a single system using the same hash would be highly desirable as this saves the storage space and reduces the computational complexity. This paper proposes a perceptual video hashing system for content identification and authentication. The objective is to design a hash extraction technique that can withstand signal processing operations on one hand and detect malicious attacks on the other hand. The proposed system relies on a new signal calibration technique for extracting the hash using the discrete cosine transform (DCT) and the discrete sine transform (DST). This consists of determining the number of samples, called the normalizing shift, that is required for shifting a digital signal so that the shifted version matches a certain pattern according to DCT/DST coefficients. The rationale for the calibration idea is that the normalizing shift resists signal processing operations while it exhibits sensitivity to local tampering (i.e., replacing a small portion of the signal with a different one). While the same hash serves both applications, two different similarity measures have been proposed for video identification and authentication, respectively. Through intensive experiments with various types of video distortions and manipulations, the proposed system has been shown to outperform related state-of-the art video hashing techniques in terms of identification and authentication with the advantageous ability to locate tampered regions

    From First Contact to Close Encounters: A Developmentally Deep Perceptual System for a Humanoid Robot

    Get PDF
    This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally

    Developmentally deep perceptual system for a humanoid robot

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 139-152).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity.(cont.) This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.by Paul Michael Fitzpatrick.Ph.D
    • …
    corecore