22 research outputs found

    Agnostically Learning Halfspaces

    Get PDF
    We consider the problem of learning a halfspace in the agnostic framework of Kearns et al., where a learner is given access to a distribution on labelled examples but the labelling may be arbitrary. The learner's goal is to output a hypothesis which performs almost as well as the optimal halfspace with respect to future draws from this distribution. Although the agnostic learning framework does not explicitly deal with noise, it is closely related to learning in worst-case noise models such as malicious noise. We give the first polynomial-time algorithm for agnostically learning halfspaces with respect to several distributions, such as the uniform distribution over the nn-dimensional Boolean cube {0,1}^n or unit sphere in n-dimensional Euclidean space, as well as any log-concave distribution in n-dimensional Euclidean space. Given any constant additive factor eps>0, our algorithm runs in poly(n) time and constructs a hypothesis whose error rate is within an additive eps of the optimal halfspace. We also show this algorithm agnostically learns Boolean disjunctions in time roughly 2^{\sqrt{n}} with respect to any distribution; this is the first subexponential-time algorithm for this problem. Finally, we obtain a new algorithm for PAC learning halfspaces under the uniform distribution on the unit sphere which can tolerate the highest level of malicious noise of any algorithm to date. Our main tool is a polynomial regression algorithm which finds a polynomial that best fits a set of points with respect to a particular metric. We show that, in fact, this algorithm is an arbitrary-distribution generalization of the well known "low-degree" Fourier algorithm of Linial, Mansour, and Nisan and has excellent noise tolerance properties when minimizing with respect to the L_1 norm. We apply this algorithm in conjunction with a non-standard Fourier transform (which does not use the traditional parity basis) for learning halfspaces over the uniform distribution on the unit sphere; we believe this technique is of independent interest

    Statistical Query Algorithms for Mean Vector Estimation and Stochastic Convex Optimization

    Get PDF
    Stochastic convex optimization, by which the objective is the expectation of a random convex function, is an important and widely used method with numerous applications in machine learning, statistics, operations research, and other areas. We study the complexity of stochastic convex optimization given only statistical query (SQ) access to the objective function. We show that well-known and popular first-order iterative methods can be implemented using only statistical queries. For many cases of interest, we derive nearly matching upper and lower bounds on the estimation (sample) complexity, including linear optimization in the most general setting. We then present several consequences for machine learning, differential privacy, and proving concrete lower bounds on the power of convex optimization–based methods. The key ingredient of our work is SQ algorithms and lower bounds for estimating the mean vector of a distribution over vectors supported on a convex body in Rd. This natural problem has not been previously studied, and we show that our solutions can be used to get substantially improved SQ versions of Perceptron and other online algorithms for learning halfspaces

    Active Ranking using Pairwise Comparisons

    Full text link
    This paper examines the problem of ranking a collection of objects using pairwise comparisons (rankings of two objects). In general, the ranking of nn objects can be identified by standard sorting methods using nlog2nn log_2 n pairwise comparisons. We are interested in natural situations in which relationships among the objects may allow for ranking using far fewer pairwise comparisons. Specifically, we assume that the objects can be embedded into a dd-dimensional Euclidean space and that the rankings reflect their relative distances from a common reference point in RdR^d. We show that under this assumption the number of possible rankings grows like n2dn^{2d} and demonstrate an algorithm that can identify a randomly selected ranking using just slightly more than dlognd log n adaptively selected pairwise comparisons, on average. If instead the comparisons are chosen at random, then almost all pairwise comparisons must be made in order to identify any ranking. In addition, we propose a robust, error-tolerant algorithm that only requires that the pairwise comparisons are probably correct. Experimental studies with synthetic and real datasets support the conclusions of our theoretical analysis.Comment: 17 pages, an extended version of our NIPS 2011 paper. The new version revises the argument of the robust section and slightly modifies the result there to give it more impac
    corecore