8,769 research outputs found

    Coactive Learning for Locally Optimal Problem Solving

    Full text link
    Coactive learning is an online problem solving setting where the solutions provided by a solver are interactively improved by a domain expert, which in turn drives learning. In this paper we extend the study of coactive learning to problems where obtaining a globally optimal or near-optimal solution may be intractable or where an expert can only be expected to make small, local improvements to a candidate solution. The goal of learning in this new setting is to minimize the cost as measured by the expert effort over time. We first establish theoretical bounds on the average cost of the existing coactive Perceptron algorithm. In addition, we consider new online algorithms that use cost-sensitive and Passive-Aggressive (PA) updates, showing similar or improved theoretical bounds. We provide an empirical evaluation of the learners in various domains, which show that the Perceptron based algorithms are quite effective and that unlike the case for online classification, the PA algorithms do not yield significant performance gains.Comment: AAAI 2014 paper, including appendice

    Surrogate Functions for Maximizing Precision at the Top

    Full text link
    The problem of maximizing precision at the top of a ranked list, often dubbed Precision@k (prec@k), finds relevance in myriad learning applications such as ranking, multi-label classification, and learning with severe label imbalance. However, despite its popularity, there exist significant gaps in our understanding of this problem and its associated performance measure. The most notable of these is the lack of a convex upper bounding surrogate for prec@k. We also lack scalable perceptron and stochastic gradient descent algorithms for optimizing this performance measure. In this paper we make key contributions in these directions. At the heart of our results is a family of truly upper bounding surrogates for prec@k. These surrogates are motivated in a principled manner and enjoy attractive properties such as consistency to prec@k under various natural margin/noise conditions. These surrogates are then used to design a class of novel perceptron algorithms for optimizing prec@k with provable mistake bounds. We also devise scalable stochastic gradient descent style methods for this problem with provable convergence bounds. Our proofs rely on novel uniform convergence bounds which require an in-depth analysis of the structural properties of prec@k and its surrogates. We conclude with experimental results comparing our algorithms with state-of-the-art cutting plane and stochastic gradient algorithms for maximizing [email protected]: To appear in the the proceedings of the 32nd International Conference on Machine Learning (ICML 2015

    OBOE: Collaborative Filtering for AutoML Model Selection

    Full text link
    Algorithm selection and hyperparameter tuning remain two of the most challenging tasks in machine learning. Automated machine learning (AutoML) seeks to automate these tasks to enable widespread use of machine learning by non-experts. This paper introduces OBOE, a collaborative filtering method for time-constrained model selection and hyperparameter tuning. OBOE forms a matrix of the cross-validated errors of a large number of supervised learning models (algorithms together with hyperparameters) on a large number of datasets, and fits a low rank model to learn the low-dimensional feature vectors for the models and datasets that best predict the cross-validated errors. To find promising models for a new dataset, OBOE runs a set of fast but informative algorithms on the new dataset and uses their cross-validated errors to infer the feature vector for the new dataset. OBOE can find good models under constraints on the number of models fit or the total time budget. To this end, this paper develops a new heuristic for active learning in time-constrained matrix completion based on optimal experiment design. Our experiments demonstrate that OBOE delivers state-of-the-art performance faster than competing approaches on a test bed of supervised learning problems. Moreover, the success of the bilinear model used by OBOE suggests that AutoML may be simpler than was previously understood
    • …
    corecore