240 research outputs found

    The 2018 PIRM Challenge on Perceptual Image Super-resolution

    Full text link
    This paper reports on the 2018 PIRM challenge on perceptual super-resolution (SR), held in conjunction with the Perceptual Image Restoration and Manipulation (PIRM) workshop at ECCV 2018. In contrast to previous SR challenges, our evaluation methodology jointly quantifies accuracy and perceptual quality, therefore enabling perceptual-driven methods to compete alongside algorithms that target PSNR maximization. Twenty-one participating teams introduced algorithms which well-improved upon the existing state-of-the-art methods in perceptual SR, as confirmed by a human opinion study. We also analyze popular image quality measures and draw conclusions regarding which of them correlates best with human opinion scores. We conclude with an analysis of the current trends in perceptual SR, as reflected from the leading submissions.Comment: Workshop and Challenge on Perceptual Image Restoration and Manipulation in conjunction with ECCV 2018 webpage: https://www.pirm2018.org

    Perception-oriented Single Image Super-Resolution via Dual Relativistic Average Generative Adversarial Networks

    Full text link
    The presence of residual and dense neural networks which greatly promotes the development of image Super-Resolution(SR) have witnessed a lot of impressive results. Depending on our observation, although more layers and connections could always improve performance, the increase of model parameters is not conducive to launch application of SR algorithms. Furthermore, algorithms supervised by L1/L2 loss can achieve considerable performance on traditional metrics such as PSNR and SSIM, yet resulting in blurry and over-smoothed outputs without sufficient high-frequency details, namely low perceptual index(PI). Regarding the issues, this paper develops a perception-oriented single image SR algorithm via dual relativistic average generative adversarial networks. In the generator part, a novel residual channel attention block is proposed to recalibrate significance of specific channels, further increasing feature expression capabilities. Parameters of convolutional layers within each block are shared to expand receptive fields while maintain the amount of tunable parameters unchanged. The feature maps are subsampled using sub-pixel convolution to obtain reconstructed high-resolution images. The discriminator part consists of two relativistic average discriminators that work in pixel domain and feature domain, respectively, fully exploiting the prior that half of data in a mini-batch are fake. Different weighted combinations of perceptual loss and adversarial loss are utilized to supervise the generator to equilibrate perceptual quality and objective results. Experimental results and ablation studies show that our proposed algorithm can rival state-of-the-art SR algorithms, both perceptually(PI-minimization) and objectively(PSNR-maximization) with fewer parameters.Comment: Re-submit after codes reviewin

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey

    Joint Demosaicing and Super-Resolution (JDSR): Network Design and Perceptual Optimization

    Full text link
    Image demosaicing and super-resolution are two important tasks in color imaging pipeline. So far they have been mostly independently studied in the open literature of deep learning; little is known about the potential benefit of formulating a joint demosaicing and super-resolution (JDSR) problem. In this paper, we propose an end-to-end optimization solution to the JDSR problem and demonstrate its practical significance in computational imaging. Our technical contributions are mainly two-fold. On network design, we have developed a Residual-Dense Squeeze-and-Excitation Networks (RDSEN) supported by a pre-demosaicing network (PDNet) as the pre-processing step. We address the issue of spatio-spectral attention for color-filter-array (CFA) data and discuss how to achieve better information flow by concatenating Residue-Dense Squeeze-and-Excitation Blocks (RDSEBs) for JDSR. Experimental results have shown that significant PSNR/SSIM gain can be achieved by RDSEN over previous network architectures including state-of-the-art RCAN. On perceptual optimization, we propose to leverage the latest ideas including relativistic discriminator and pre-excitation perceptual loss function to further improve the visual quality of textured regions in reconstructed images. Our extensive experiment results have shown that Texture-enhanced Relativistic average Generative Adversarial Network (TRaGAN) can produce both subjectively more pleasant images and objectively lower perceptual distortion scores than standard GAN for JDSR. Finally, we have verified the benefit of JDSR to high-quality image reconstruction from real-world Bayer pattern data collected by NASA Mars Curiosity.Comment: IEEE Transactions on Computational Imagin

    MetricGAN: Generative Adversarial Networks based Black-box Metric Scores Optimization for Speech Enhancement

    Full text link
    Adversarial loss in a conditional generative adversarial network (GAN) is not designed to directly optimize evaluation metrics of a target task, and thus, may not always guide the generator in a GAN to generate data with improved metric scores. To overcome this issue, we propose a novel MetricGAN approach with an aim to optimize the generator with respect to one or multiple evaluation metrics. Moreover, based on MetricGAN, the metric scores of the generated data can also be arbitrarily specified by users. We tested the proposed MetricGAN on a speech enhancement task, which is particularly suitable to verify the proposed approach because there are multiple metrics measuring different aspects of speech signals. Moreover, these metrics are generally complex and could not be fully optimized by Lp or conventional adversarial losses.Comment: Accepted by Thirty-sixth International Conference on Machine Learning (ICML) 201

    Efficient Deep Neural Network for Photo-realistic Image Super-Resolution

    Full text link
    Recent progress in the deep learning-based models has improved photo-realistic (or perceptual) single-image super-resolution significantly. However, despite their powerful performance, many methods are difficult to apply to real-world applications because of the heavy computational requirements. To facilitate the use of a deep model under such demands, we focus on keeping the network efficient while maintaining its performance. In detail, we design an architecture that implements a cascading mechanism on a residual network to boost the performance with limited resources via multi-level feature fusion. In addition, our proposed model adopts group convolution and recursive scheme in order to achieve extreme efficiency. We further improve the perceptual quality of the output by employing the adversarial learning paradigm and a multi-scale discriminator approach. The performance of our method is investigated through extensive internal experiments and benchmark using various datasets. Our results show that our models outperform the recent methods with similar complexity, for both traditional pixel-based and perception-based tasks

    PCA-SRGAN: Incremental Orthogonal Projection Discrimination for Face Super-resolution

    Full text link
    Generative Adversarial Networks (GAN) have been employed for face super resolution but they bring distorted facial details easily and still have weakness on recovering realistic texture. To further improve the performance of GAN based models on super-resolving face images, we propose PCA-SRGAN which pays attention to the cumulative discrimination in the orthogonal projection space spanned by PCA projection matrix of face data. By feeding the principal component projections ranging from structure to details into the discriminator, the discrimination difficulty will be greatly alleviated and the generator can be enhanced to reconstruct clearer contour and finer texture, helpful to achieve the high perception and low distortion eventually. This incremental orthogonal projection discrimination has ensured a precise optimization procedure from coarse to fine and avoids the dependence on the perceptual regularization. We conduct experiments on CelebA and FFHQ face datasets. The qualitative visual effect and quantitative evaluation have demonstrated the overwhelming performance of our model over related works

    Learning a Deep Convolution Network with Turing Test Adversaries for Microscopy Image Super Resolution

    Full text link
    Adversarially trained deep neural networks have significantly improved performance of single image super resolution, by hallucinating photorealistic local textures, thereby greatly reducing the perception difference between a real high resolution image and its super resolved (SR) counterpart. However, application to medical imaging requires preservation of diagnostically relevant features while refraining from introducing any diagnostically confusing artifacts. We propose using a deep convolutional super resolution network (SRNet) trained for (i) minimising reconstruction loss between the real and SR images, and (ii) maximally confusing learned relativistic visual Turing test (rVTT) networks to discriminate between (a) pair of real and SR images (T1) and (b) pair of patches in real and SR selected from region of interest (T2). The adversarial loss of T1 and T2 while backpropagated through SRNet helps it learn to reconstruct pathorealism in the regions of interest such as white blood cells (WBC) in peripheral blood smears or epithelial cells in histopathology of cancerous biopsy tissues, which are experimentally demonstrated here. Experiments performed for measuring signal distortion loss using peak signal to noise ratio (pSNR) and structural similarity (SSIM) with variation of SR scale factors, impact of rVTT adversarial losses, and impact on reporting using SR on a commercially available artificial intelligence (AI) digital pathology system substantiate our claims.Comment: To appear in the Proceedings of the 2019 IEEE International Symposium on Biomedical Imaging (ISBI 2019

    Use of Generative Adversarial Network Algorithm in Super-Resolution Images to Increase the Quality of Digital Elevation Models Based on ALOS PALSAR Data

    Get PDF
    Digital elevation models are responsible for providing altimetric information on a surface to be mapped. While global models of low and medium spatial resolution are available open source by several space agencies, the high- resolution ones, which are utilized in scales 1:25,000 and larger, are scarce and expensive. Here we address this limitation by the utilization of deep learning algorithms coupled with Single Image Super-Resolution techniques in digital elevation models to obtain better spatial quality versions from lower resolution inputs. The development of a GAN-based (Generative Adversarial Network-based) methodology enables the improvement of the initial spatial resolution of low-resolution images. In the geospatial data context, for example, these algorithms can be used with digital elevation models and satellite images. The methodological approach uses a dataset with digital elevation models SRTM (Shuttle Radar Topography Mission) (30 meters of spatial resolution) and ALOS PALSAR (12.5 meters of spatial  resolution), created with the objective of allowing the study to be carried  out, promoting the emergence of new research groups in the area as well as  enabling the comparison between the results obtained. It has been found that by increasing the number of iterations the performance of the  generated model was improved and the quality of the generated image increased. Furthermore, the visual analysis of the generated image against the high- and low-resolution ones showed a great similarity between the first two

    PIRM Challenge on Perceptual Image Enhancement on Smartphones: Report

    Full text link
    This paper reviews the first challenge on efficient perceptual image enhancement with the focus on deploying deep learning models on smartphones. The challenge consisted of two tracks. In the first one, participants were solving the classical image super-resolution problem with a bicubic downscaling factor of 4. The second track was aimed at real-world photo enhancement, and the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with a DSLR camera. The target metric used in this challenge combined the runtime, PSNR scores and solutions' perceptual results measured in the user study. To ensure the efficiency of the submitted models, we additionally measured their runtime and memory requirements on Android smartphones. The proposed solutions significantly improved baseline results defining the state-of-the-art for image enhancement on smartphones
    corecore