2,245 research outputs found

    Action Intention Modulates the Activity Pattern in Early Visual Areas

    Get PDF
    The activity pattern in the early visual cortex (EVC) can be used to predict upcoming actions as it is functionally connected to higher-order motor areas. However, the mechanism by which the EVC enhances action-relevant features is unclear. We explored this using fMRI. Participants performed Align or Open Hand movements to two oriented objects. We localized the calcarine sulcus, corresponding to the periphery, and the occipital pole, corresponding to the fovea. During planning, univariate analysis did not reveal significant results so we used multi-voxel pattern analysis (MVPA) to decode action type and object orientation. Though objects were located in the periphery, we found a significant decoding accuracy for orientation in an action-dependent manner in the occipital pole and action network areas. We established the functional connectivity between the EVC and somatomotor areas during planning using psychophysiological interaction (PPI) analysis. Taken together, our results show object orientation is modulated by action preparation

    The role of the left head of caudate in suppressing irrelevant words

    Get PDF
    Suppressing irrelevant words is essential to successful speech production and is expected to involve general control mechanisms that reduce interference from task-unrelated processing. To investigate the neural mechanisms that suppress visual word interference, we used fMRI and a Stroop task, using a block design with an event-related analysis. Participants indicated with a finger press whether a visual stimulus was colored pink or blue. The stimulus was either the written word "BLUE," the written word "PINK," or a string of four Xs, with word interference introduced when the meaning of the word and its color were "incongruent" (e.g., BLUE in pink hue) relative to congruent (e.g., BLUE in blue) or neutral (e.g., XXXX in pink). The participants also made color decisions in the presence of spatial interference rather than word interference (i.e., the Simon task). By blocking incongruent, congruent, and neutral trials, we identified activation related to the mechanisms that suppress interference as that which was greater at the end relative to the start of incongruency. This highlighted the role of the left head of caudate in the control of word interference but not spatial interference. The response in the left head of caudate contrasted to bilateral inferior frontal activation that was greater at the start than at the end of incongruency, and to the dorsal anterior cingulate gyrus which responded to a change in the motor response. Our study therefore provides novel insights into the role of the left head of caudate in the mechanisms that suppress word interference

    A functional dissociation of the left frontal regions that contribute to single word production tasks

    Get PDF
    Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe

    INVESTIGATING THE EFFECTS OF OBJECT CONNECTEDNESS ON RAPID VISUALLY-GUIDED REACHING TOWARD MULTIPLE GOALS

    Get PDF
    We developed a rapid reaching paradigm in which we require participants to make speeded reaches toward ambiguous target displays, with a goal target filling-in only after movement onset. In our previous work, we have found that initial reaches extend toward the averaged spatial location of the presented targets. Our aim for the current study was to determine if object connectedness - a strong perceptual illusion in which two connected objects appear as one - could influence the strategic reaching behaviour. Even though there was a powerful effect of the illusion on perception, the visuomotor system was able to utilize the true target information and continue to plan reaches based on the number and distribution of targets presented. These results resonate with the idea of a division of labour between vision-for-perception and vision-for-action - but extend this dissociation (with respect to the action system) into the realm of motor planning

    “What’s that?” “What Went Wrong?” Positive and Negative Surprise and the Rostral–Ventral to Caudal–Dorsal Functional Gradient in the Brain

    Get PDF
    Medial prefrontal cortical (mPFC) functions may be aspects of ventral or dorsal control pathways, depending on the position along a rostral–ventral to caudal–dorsal gradient within medial cortex that may mirror the pattern of interconnections between cortex and striatum. Rostral–ventral mPFC is connected to ventral striatum and posterior cingulate cortex/precuneus are connected with dorsal striatum. Reentrant ventral (limbic), central (associative), and dorsal (motor) corticostriatal loops pass information from ventral-to-dorsal striatum, shifting hedonic processing toward habitual action. Splitting up unexpected occurrences (positive surprise) from non-occurrences (negative surprise) instead of splitting according to valence mirrors the importance of negative surprise in dorsal habitual control which is insensitive to the valence of outcomes. The importance of positive surprise and valence increases toward the rostral–ventral end of the gradient in mPFC and ventrolateral prefrontal cortex. We discuss paradigms that may help to disentangle positive from negative surprise. Moreover, we think that the framework of the functional gradient may help giving various functions in mPFC their place in a larger scheme

    Visuomotor Dissociation in Cerebral Scaling of Size

    Get PDF
    Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Decoding the neural substrates of reward-related decision making with functional MRI

    Get PDF
    Although previous studies have implicated a diverse set of brain regions in reward-related decision making, it is not yet known which of these regions contain information that directly reflects a decision. Here, we measured brain activity using functional MRI in a group of subjects while they performed a simple reward-based decision-making task: probabilistic reversal-learning. We recorded brain activity from nine distinct regions of interest previously implicated in decision making and separated out local spatially distributed signals in each region from global differences in signal. Using a multivariate analysis approach, we determined the extent to which global and local signals could be used to decode subjects' subsequent behavioral choice, based on their brain activity on the preceding trial. We found that subjects' decisions could be decoded to a high level of accuracy on the basis of both local and global signals even before they were required to make a choice, and even before they knew which physical action would be required. Furthermore, the combined signals from three specific brain areas (anterior cingulate cortex, medial prefrontal cortex, and ventral striatum) were found to provide all of the information sufficient to decode subjects' decisions out of all of the regions we studied. These findings implicate a specific network of regions in encoding information relevant to subsequent behavioral choice
    corecore