28,292 research outputs found

    Dance Teaching by a Robot: Combining Cognitive and Physical Human-Robot Interaction for Supporting the Skill Learning Process

    Full text link
    This letter presents a physical human-robot interaction scenario in which a robot guides and performs the role of a teacher within a defined dance training framework. A combined cognitive and physical feedback of performance is proposed for assisting the skill learning process. Direct contact cooperation has been designed through an adaptive impedance-based controller that adjusts according to the partner's performance in the task. In measuring performance, a scoring system has been designed using the concept of progressive teaching (PT). The system adjusts the difficulty based on the user's number of practices and performance history. Using the proposed method and a baseline constant controller, comparative experiments have shown that the PT presents better performance in the initial stage of skill learning. An analysis of the subjects' perception of comfort, peace of mind, and robot performance have shown a significant difference at the p < .01 level, favoring the PT algorithm.Comment: Presented at IEEE International Conference on Robotics and Automation ICRA-201

    Fast and Continuous Foothold Adaptation for Dynamic Locomotion through CNNs

    Get PDF
    Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain-awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, dynamic foothold adaptation strategy based on visual feedback. Our method adjusts the landing position of the feet in a fully reactive manner, using only on-board computers and sensors. The correction is computed and executed continuously along the swing phase trajectory of each leg. To efficiently adapt the landing position, we implement a self-supervised foothold classifier based on a Convolutional Neural Network (CNN). Our method results in an up to 200 times faster computation with respect to the full-blown heuristics. Our goal is to react to visual stimuli from the environment, bridging the gap between blind reactive locomotion and purely vision-based planning strategies. We assess the performance of our method on the dynamic quadruped robot HyQ, executing static and dynamic gaits (at speeds up to 0.5 m/s) in both simulated and real scenarios; the benefit of safe foothold adaptation is clearly demonstrated by the overall robot behavior.Comment: 9 pages, 11 figures. Accepted to RA-L + ICRA 2019, January 201

    A Whole-Body Pose Taxonomy for Loco-Manipulation Tasks

    Full text link
    Exploiting interaction with the environment is a promising and powerful way to enhance stability of humanoid robots and robustness while executing locomotion and manipulation tasks. Recently some works have started to show advances in this direction considering humanoid locomotion with multi-contacts, but to be able to fully develop such abilities in a more autonomous way, we need to first understand and classify the variety of possible poses a humanoid robot can achieve to balance. To this end, we propose the adaptation of a successful idea widely used in the field of robot grasping to the field of humanoid balance with multi-contacts: a whole-body pose taxonomy classifying the set of whole-body robot configurations that use the environment to enhance stability. We have revised criteria of classification used to develop grasping taxonomies, focusing on structuring and simplifying the large number of possible poses the human body can adopt. We propose a taxonomy with 46 poses, containing three main categories, considering number and type of supports as well as possible transitions between poses. The taxonomy induces a classification of motion primitives based on the pose used for support, and a set of rules to store and generate new motions. We present preliminary results that apply known segmentation techniques to motion data from the KIT whole-body motion database. Using motion capture data with multi-contacts, we can identify support poses providing a segmentation that can distinguish between locomotion and manipulation parts of an action.Comment: 8 pages, 7 figures, 1 table with full page figure that appears in landscape page, 2015 IEEE/RSJ International Conference on Intelligent Robots and System

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 217, March 1981

    Get PDF
    Approximately 130 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981 are included in this bibliography. Topics include aerospace medicine and biology

    User evaluation of an interactive learning framework for single-arm and dual-arm robots

    Get PDF
    The final publication is available at link.springer.comSocial robots are expected to adapt to their users and, like their human counterparts, learn from the interaction. In our previous work, we proposed an interactive learning framework that enables a user to intervene and modify a segment of the robot arm trajectory. The framework uses gesture teleoperation and reinforcement learning to learn new motions. In the current work, we compared the user experience with the proposed framework implemented on the single-arm and dual-arm Barrett’s 7-DOF WAM robots equipped with a Microsoft Kinect camera for user tracking and gesture recognition. User performance and workload were measured in a series of trials with two groups of 6 participants using two robot settings in different order for counterbalancing. The experimental results showed that, for the same task, users required less time and produced shorter robot trajectories with the single-arm robot than with the dual-arm robot. The results also showed that the users who performed the task with the single-arm robot first experienced considerably less workload in performing the task with the dual-arm robot while achieving a higher task success rate in a shorter time.Peer ReviewedPostprint (author's final draft
    • …
    corecore