36,824 research outputs found

    Quantifying the effect of aerial imagery resolution in automated hydromorphological river characterisation

    Get PDF
    Existing regulatory frameworks aiming to improve the quality of rivers place hydromorphology as a key factor in the assessment of hydrology, morphology and river continuity. The majority of available methods for hydromorphological characterisation rely on the identification of homogeneous areas (i.e., features) of flow, vegetation and substrate. For that purpose, aerial imagery is used to identify existing features through either visual observation or automated classification techniques. There is evidence to believe that the success in feature identification relies on the resolution of the imagery used. However, little effort has yet been made to quantify the uncertainty in feature identification associated with the resolution of the aerial imagery. This paper contributes to address this gap in knowledge by contrasting results in automated hydromorphological feature identification from unmanned aerial vehicles (UAV) aerial imagery captured at three resolutions (2.5 cm, 5 cm and 10 cm) along a 1.4 km river reach. The results show that resolution plays a key role in the accuracy and variety of features identified, with larger identification errors observed for riffles and side bars. This in turn has an impact on the ecological characterisation of the river reach. The research shows that UAV technology could be essential for unbiased hydromorphological assessment

    A Neural Model of Motion Processing and Visual Navigation by Cortical Area MST

    Full text link
    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually-guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals, and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves, and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.Defense Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0409, N00014-95-1-0657, N00014-91-J-4100, N0014-94-I-0597); Air Force Office of Scientific Research (F49620-92-J-0334)

    Animal Cognition, Species Invariantism, and Mathematical Realism

    Get PDF
    What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: proto-moral beliefs differ substantially between animal species, whereas proto-mathematical beliefs (at least in the animals studied) seem to show more similarities. This makes moral beliefs more susceptible to a contingency challenge from evolution compared to mathematical beliefs, and indicates that mathematical beliefs might be less vulnerable to evolutionary debunking arguments. I will then examine to what extent INC can be used to flesh out a positive case for mathematical realism. Finally, I will review two forms of mathematical realism that are promising in the light of the evolutionary evidence about numerical cognition, ante rem structuralism and Millean empiricism

    Design Guidelines for Agent Based Model Visualization

    Get PDF
    In the field of agent-based modeling (ABM), visualizations play an important role in identifying, communicating and understanding important behavior of the modeled phenomenon. However, many modelers tend to create ineffective visualizations of Agent Based Models (ABM) due to lack of experience with visual design. This paper provides ABM visualization design guidelines in order to improve visual design with ABM toolkits. These guidelines will assist the modeler in creating clear and understandable ABM visualizations. We begin by introducing a non-hierarchical categorization of ABM visualizations. This categorization serves as a starting point in the creation of an ABM visualization. We go on to present well-known design techniques in the context of ABM visualization. These techniques are based on Gestalt psychology, semiology of graphics, and scientific visualization. They improve the visualization design by facilitating specific tasks, and providing a common language to critique visualizations through the use of visual variables. Subsequently, we discuss the application of these design techniques to simplify, emphasize and explain an ABM visualization. Finally, we illustrate these guidelines using a simple redesign of a NetLogo ABM visualization. These guidelines can be used to inform the development of design tools that assist users in the creation of ABM visualizations.Visualization, Design, Graphics, Guidelines, Communication, Agent-Based Modeling

    Multi-stakeholder involvement and urban green space performance

    Get PDF
    This study aimed to identify the main factors influencing urban green space performance. Therefore, a conceptual framework on the relations of multi-stakeholder involvement (MSI) and the performance was conducted by a mixed-method approach. The study covered all urban green space projects (UGSPs) published in international journals as its population which were obtained from three main databases: ISI Web of Knowledge, Scopus and Picarta. Using a few combinations of keywords, 29 relevant journals were identified, which included 42 UGSPs as the main units of analysis in this study. A content analysis was used to determine the contribution of MSI to the performance of urban green space. The main internal (state, private, society, planning/design, implementation, maintenance, input for management, and financial support) and external (regulation, good leadership and financial support) MSI indicators were further identified. The findings showed that the main indicators that significantly influence urban green space performance are 'state, society, implementation and regulation'. The study concluded that the state plays a critical role in the UGSPs' performance although it is not the only actor. The influential role of the state and society should also be considered since most of green space projects are non-profit oriented. 'Society' involvement also contributes to the performance and 'regulation' is also needed as a legal basis for green space development and management. To validate the conceptual framework and mixed-method approach developed here, it is recommended that more studies should be conducted to compare the relationship of the MSI and the UGSPs' performance in different categories

    Optical flow sensing and the inverse perception problem for flying bats

    Full text link
    The movements of birds, bats, and other flying species are governed by complex sensorimotor systems that allow the animals to react to stationary environmental features as well as to wind disturbances, other animals in nearby airspace, and a wide variety of unexpected challenges. The paper and talk will describe research that analyzes the three-dimensional trajectories of bats flying in a habitat in Texas. The trajectories are computed with stereoscopic methods using data from synchronous thermal videos that were recorded with high temporal and spatial resolution from three viewpoints. Following our previously reported work, we examine the possibility that bat trajectories in this habitat are governed by optical flow sensing that interpolates periodic distance measurements from echolocation. Using an idealized geometry of bat eyes, we introduce the concept of time-to-transit, and recall some research that suggests that this quantity is computed by the animals' visual cortex. Several steering control laws based on time-to-transit are proposed for an idealized flight model, and it is shown that these can be used to replicate the observed flight of what we identify as typical bats. Although the vision-based motion control laws we propose and the protocols for switching between them are quite simple, some of the trajectories that have been synthesized are qualitatively bat-like. Examination of the control protocols that generate these trajectories suggests that bat motions are governed both by their reactions to a subset of key feature points as well by their memories of where these feature points are located

    Spatial Dispersion of Peering Clusters in the European Internet

    Get PDF
    We study the role played by geographical distance in the peering decisions between Internet Service Providers. Firstly, we assess whether or not the Internet industry shows clustering in peering; we then concentrate on the dynamics of the agglomeration process by studying the effects of bilateral distance in changing the morphology of existing peering patterns. Our results show a dominance of random spatial patterns in peering agreements. The sign of the effect of distance on the peering decision, driving the agglomeration/dispersion process, depends, however, on the initial level of clustering. We show that clustered patterns will disperse in the long run

    Binocular interactions

    Get PDF
    Contains fulltext : 62061.pdf (Publisher’s version ) (Open Access)RU Radboud Universiteit Nijmegen, 23 september 2002Promotor : Weert, C.M.M. de164 p
    • 

    corecore