503 research outputs found

    Factor graph based detection approach for high-mobility OFDM systems with large FFT modes

    Get PDF
    In this article, a novel detector design is proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency selective and time varying channels. Namely, we focus on systems with large OFDM symbol lengths where design and complexity constraints have to be taken into account and many of the existing ICI reduction techniques can not be applied. We propose a factor graph (FG) based approach for maximum a posteriori (MAP) symbol detection which exploits the frequency diversity introduced by the ICI in the OFDM symbol. The proposed algorithm provides high diversity orders allowing to outperform the free-ICI performance in high-mobility scenarios with an inherent parallel structure suitable for large OFDM block sizes. The performance of the mentioned near-optimal detection strategy is analyzed over a general bit-interleaved coded modulation (BICM) system applying low-density parity-check (LDPC) codes. The inclusion of pilot symbols is also considered in order to analyze how they assist the detection process

    A comparison of digital transmission techniques under multichannel conditions at 2.4 GHz in the ISM BAND

    Get PDF
    In order to meet the observation quality criteria of micro-UAVs, and particularly in the context of the « Trophée Micro-Drones », ISAE/SUPAERO is studying technical solutions to transmit a high data rate from a video payload onboard a micro-UAV. The laboratory has to consider the impact of multipath and shadowing effects on the emitted signal. Therefore fading resistant transmission techniques are considered. This techniques paper have to reveal an optimum trade-off between three parameters, namely: the characteristics of the video stream, the complexity of the modulation and coding scheme, and the efficiency of the transmission, in term of BER

    Enhanced Channel Estimation Based On Basis Expansion Using Slepian Sequences for Time Varying OFDM Systems

    Get PDF
    The Channel estimation in OFDM has become very important to recover the accurate information from the received data as the next generation of wireless technology has very high data rate along with the very high speed mobile terminals as users. In addition the fast fading channels, ICI, multipath fading channels may completely destroy the data. Also it is required to use less complex method for estimation. We are proposing the method which compares the number of techniques and gives the results in BER Vs SNR graphs. The LS estimation technique is less complex as compared to MMSE estimation but gives fails in accuracy. Using Prolate function we can reduce the complexity in calculation of parameters. If compared with state of art approach where the complexity is O(N)3, the complexity using Prolate function is O(N)2.The function depends upon maximum delay and maximum Doppler frequency spread thus parameter calculation is reduced. The technique dose not calculate particular channel characteristics. Slepian sequences utilizes the bandwidth as the sharp pulses replace the regular rectangular pulses which causes spectral leakage and thus ICI. The simulation of BER Vs SNR using CP and UW with and without Prolate is proposed that increases spectral efficiency with reduced calculations replacing rectangular pulses by Slepian pulses which increase energy concentration by Sharpe pulses thus reduction in inter carrier interference caused by multipath fading. DOI: 10.17762/ijritcc2321-8169.150513

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore