559 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Scalable Bandwidth Management in Software-Defined Networks

    Get PDF
    There has been a growing demand to manage bandwidth as the network traffic increases. Network applications such as real time video streaming, voice over IP and video conferencing in IP networks has risen rapidly over the recently and is projected to continue in the future. These applications consume a lot of bandwidth resulting in increasing pressure on the networks. In dealing with such challenges, modern networks must be designed to be application sensitive and be able to offer Quality of Service (QoS) based on application requirements. Network paradigms such as Software Defined Networking (SDN) allows for direct network programmability to change the network behavior to suit the application needs in order to provide solutions to the challenge. In this dissertation, the objective is to research if SDN can provide scalable QoS requirements to a set of dynamic traffic flows. Methods are implemented to attain scalable bandwidth management to provide high QoS with SDN. Differentiated Services Code Point (DSCP) values and DSCP remarking with Meters are used to implement high QoS requirements such that bandwidth guarantee is provided to a selected set of traffic flows. The theoretical methodology is implemented for achieving QoS, experiments are conducted to validate and illustrate that QoS can be implemented in SDN, but it is unable to implement High QoS due to the lack of implementation for Meters with DSCP remarking. The research work presented in this dissertation aims at the identification and addressing the critical aspects related to the SDN based QoS provisioning using flow aggregation techniques. Several tests and demonstrations will be conducted by utilizing virtualization methods. The tests are aimed at supporting the proposed ideas and aims at creating an improved understanding of the practical SDN use cases and the challenges that emerge in virtualized environments. DiffServ Assured Forwarding is chosen as a QoS architecture for implementation. The bandwidth management scalability in SDN is proved based on throughput analysis by considering two conditions i.e 1) Per-flow QoS operation and 2) QoS by using DiffServ operation in the SDN environment with Ryu controller. The result shows that better performance QoS and bandwidth management is achieved using the QoS by DiffServ operation in SDN rather than the per-flow QoS operation

    An adaptive algorithm for Internet multimedia delivery in a DiffServ environment.

    Get PDF
    To meet the Quality of Service (QoS) requirements of multimedia applications and to reduce the network congestion, several service models and mechanisms have been proposed. Among these, Differentiated Service (DiffServ) architecture has been considered as a scalable and flexible QoS architecture for the Internet. DiffServ provides class-based QoS guarantees. Applications in different classes receive different QoS and are priced differently. If network congestion occurs, DiffServ may not be able to guarantee the QoS for the application. Thus, the QoS may not reflect the price paid for the service. A problem of considerable economic and research importance is how to achieve a good price and quality tradeoff even at times of congestion. This thesis presents an Adaptive Class Switching Algorithm (ACSA) which intends to provide good quality with good price for real-time multimedia applications in a DiffServ environment. The ACSA algorithm combines the techniques of Real-time Transport Protocol (RTP), DiffServ, and Adaptation together. It also takes both QoS and price into account to provide users a good QoS with a good price. The algorithm dynamically selects the most suitable class based on both the QoS feedback received and the highest user utility. The user utility is a function of quality, price, and the weight which reflects the relative sensitivity to quality and price. The class with the highest user utility is the class that provides the best quality and price tradeoff. The QoS feedback is conveyed by RTP\u27s Control Protocol (RTCP) Receiver Reports. The results of simulation demonstrate that ACSA can react fast to the current class state in the network and reflects the best QoS and price tradeoff. It always seeks to find a class which provides the highest user utility except when the Internet is congested and the required QoS in all classes can not be satisfied. If this happens, the real-time multimedia flow chooses Best-Effort class with no payment. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F46. Source: Masters Abstracts International, Volume: 44-01, page: 0389. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Design, implementation and evaluation of a QoS-aware transport protocol

    Get PDF
    In the context of a reconfigurable transport protocol framework, we propose a QoS-aware Transport Protocol (QSTP), specifically designed to operate over QoS-enabled networks with bandwidth guarantee. QSTP combines QoS-aware TFRC congestion control mechanism, which takes into account the network-level bandwidth reservations, with a Selective ACKnowledgment (SACK) mechanism in order to provide a QoS-aware transport service that fill the gap between QoS enabled network services and QoS constraint applications. We have developed a prototype of this protocol in the user-space and conducted a large range of measurements to evaluate this proposal under various network conditions. Our results show that QSTP allows applications to reach their negotiated QoS over bandwidth guaranteed networks, such as DiffServ/AF network, where TCP fails. This protocol appears to be the first reliable protocol especially designed for QoS network architectures with bandwidth guarantee

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support
    corecore