69 research outputs found

    LTE Indoor MIMO Performance and Antenna Configuration

    Get PDF
    Long-term evolution (LTE) and multiple input multiple output (MIMO) have earned reputations to be a cutting‒edge technology, which can boost significantly wireless communication performances. However, many aspects influence on LTE MIMO efficiency; those include propagation environments and antenna configurations. The goal of the thesis is to study performances of LTE MIMO on downlink in indoor. MIMO gains over transmit diversity and single antenna are the objective. Additionally, the study compares MIMO indoor performances with different antenna configurations at LTE base station and UE, including space diversity and polarization diversity. Some results obtained in this thesis follow the expectations what have been studied in literature and previous practical studies but some differences are also pointed out. Medium access control throughput (MAC TP) and some system parameters in LTE network that are linked with TP are analysed; those parameters are CQI, MCS as well as MIMO utilization. Effects of indoor propagation, such as LoS, NLoS, good and bad signal levels on SNR strength and MIMO utilization are clarified. In overall, MIMO outperforms transmit diversity (TxDiv) and single antenna in LTE indoor. The overall MIMO MAC TP gains are about nearly 40.0% over TxDiv and more than 20.0% over single stream. LoS environment boost SNR strength. Hence, up to 35.0% TP gain over single antenna is achieved. However, LoS signals make the channel become correlated due to lack of multipaths, causing that MIMO is not fully utilized. The gain of MIMO over single antenna is reduced at no LoS environments, particularly only around 17.0% and 21.0% MAC TP gains are recorded at NLoS channels with good signal levels and weak signal strength, relatively. The overall TP gain the UE experiences by using TxDiv over single antenna is roughly more than 20.0%, but LoS environment limits TxDiv performance. Hence, at LoS channel, TxDiv performance is reduced by around 2.0% compared to single stream. The worse the channel, the better TxDiv performs. The highest gain is at cell edge environment when TxDiv improves throughput more than 40.0% over single antenna. Clearly, antenna configuration impacts network performance. Large horizontal separation (7λ) between antenna elements outperforms small separation (0.5λ) in terms of SNR, MIMO utilization and MAC TP. The MAC TPs of large separation by using omni-directional and directional antennas are almost similar, around 27.0 Mbps. Space diversity with omni-directional antennas provides roughly 14.0% MAC TP improvement while only approximately 4.5% TP gain can be achieved with directional antennas. Vertical‒horizontal polarization pair deployed at LTE base station is found to provide better performance over vertical‒vertical polarization and X‒pol pairs. Signals also appear to be more correlated with vertical-horizontal polarization pair since MIMO utilization gets better values, MIMO utilization gains are around 18.0% over vertical-vertical polarization pair and 6.0% over X-pol pair, resulting in around 31.7% and 17.0% MAC TP gains over the two latter, relatively. The results also point out that changing polarizations at UE do not give clear MAC TP and MIMO utilization improvements. From the radio network planning point of view, the results obtained in this thesis can be considered as guidelines for indoor network planning and optimization for network operators. It is important to conclude that based on the measurements made in this thesis, space diversity (7λ) with omni-directional antennas and vertical-horizontal polarization pairs appear to give optimal indoor performance. However, it should be taken into consideration that all results presented in this thesis are highly dependable on the chosen antennas, LTE network systems, devices and indoor environment where the measurements are carried out. Hence, the results may vary with the factors mentioned

    Radio Resource Management for Ultra-Reliable Low-Latency Communications in 5G

    Get PDF

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Un-coordinated multi-user and inter-cell interference alignment based on partial and outdated information for large cellular networks

    Get PDF
    The cellular networks have gone through rapid evolution during the past decade. However, their performance is still limited due to the problem of interference. Therefore, interference management in current and future cellular networks is still an ongoing research topic. Interference Alignment is one of the techniques to manage the interference efficiently by using "align" and "suppression" strategy. In the first part of this thesis we focus on Coordinated inter cell interference alignment in a large cellular network. We assess the performance of interference alignment based transmit precoding under specific receiver strategies and coordination scenarios by comparing with different state of the art precoding schemes. We continue our assessment by considering imperfect channel state information at the transmitter. The results show that the gains of coordinated alignment based transmission are very sensitive to the receiver strategies and imperfections as compared to the other precoding schemes. However, in case of the availability of good channel conditions with very slow moving users, coordinated interference alignment outperforms the other baselines even with imperfect channel state information. In addition to that, we propose efficient user selection methods to enhance the performance of coordinated alignment. The results of our assessment draws important conclusions about the application of coordinated interference alignment in practical systems. In the second part of the thesis we consider a cellular system where each cell is serving multiple users simultaneously using the same radio resource. In this scenario, we have to manage not only the inter cell interference but also the multi user interference. For this purpose, we propose a novel Uncoordinated transmit precoding scheme for multi user cellular networks which is based on the alignment of multi user interference with partial and outdated inter cell interference. We show analytically that our scheme approaches the performance optimal transmission scheme. With the help of simulations we show that our proposal outperforms the state of the art non-alignment based multi user transmit precoding schemes We further propose user selection methods which exploit the diversity gains and improve the system spectral efficiency. In order to assess the feasibility of our proposal in a real system, we evaluate our scheme with practical constraints like imperfect information at the transmitter and limited feedback in uplink channel. For the proof of concept we also evaluate the performance of our scheme with measured channels using a software defined measurement platform. Finally, we also assess the application of our proposal in future heterogeneous networks. The outcome of our efforts states that as an interference alignment based transmission scheme, our scheme is a good candidate to manage the two dimensional interference in multi user cellular networks. It outperforms the non-alignment baselines in many scenarios even with practical constraints

    Performance Evaluation and Analysis of Mimo Schemes in LTE Networks Environment

    Get PDF
    RÉSUMÉ Dans cette thèse, nous proposons d'évaluer et d’analyser les performances des configurations radio à antennes multiples à l'émission et/ou la réception (MIMO) dans l’environnement des réseaux LTE (Long Term Evolution). Plus spécifiquement, on s’intéresse à la couche physique de l'interface radio OFDM-MIMO de ces réseaux. Après une introduction rapide aux réseaux LTE et aux techniques MIMO, on présente dans une première étape, une analyse théorique du taux d'erreur binaire en fonction du rapport signal sur bruit des deux principaux codes spatio-temporels de la norme LTE, à savoir le codage SFBC 21 (Space Frequency Block Coding) et le codage FSTD 42 (Frequency Switch Transmit Diversity). On développe les équations analytiques du taux d'erreur binaire de ces codes dans un canal à évanouissement de Rayleigh sans corrélation spatiale qui sont par la suite comparées à des valeurs obtenues par simulations Monte-Carlo. Dans une deuxième étape, on considère l’évaluation de la capacité du canal résultant de l’utilisation de ces mêmes codes dans un canal à évanouissement de Rayleigh. Pour fin de comparaison, on propose par la suite d’évaluer par simulation leur débit effectif. Les résultats montrent que la capacité peut effectivement être presque atteinte en pratique. Le deuxième volet de cette thèse considère les performances des systèmes MIMO utilisant la sélection d’antennes. Nous utilisons la théorie d'ordre statistique pour développer des équations analytiques relatives au taux d’erreur binaire des systèmes avec sélection d'antennes du coté récepteur dans un canal d'évanouissement de Rayleigh sans corrélation spatiale. Afin de valider numériquement les résultats de notre analyse, un algorithme à sélection d’antenne au récepteur a été développé et utilisé en simulation. Dans un dernier temps, on évalue l'effet de la corrélation spatiale entre les antennes. L’étude est faite à partir de simulations et d’un modèle de corrélation spatiale basé sur le produit Kronecker de deux matrices de corrélation relatives respectivement à l'émission et à la réception.----------ABSTRACT This thesis considers both an analysis and a numerical evaluation of the performance of MIMO radio systems in the LTE network environment. More specifically we consider the physical layer of the OFDM-MIMO based radio interface. As a first step we present a theoretical analysis of the bit error rate of the two space-time codes adopted by the LTE norm, namely the SFBC 21 and FSTD 42 codes, as a function of the signal upon noise ratio. Analytical expressions are given for transmission over a Rayleigh channel without spatial correlation which are then compared with Monte-Carlo simulations. As a second step, we consider the capacity of the channel obtained by using these codes on a Rayleigh fading channel. Results show that simulated throughput almost reaches the capacity limit. As a different topic, this thesis considers also MIMO systems based on antenna selection. By using order statistics we develop analytical expressions for the error rate on a Rayleigh channel without antenna correlation. In order to validate our numerical results, an algorithm implementing antenna selection at the receiver has been developed and used in the simulations. As a last step the effect of antenna correlation is investigated through the use of simulations and a model of spatial antenna correlation based on the Kronecker product of two correlation matrices related to the transmitting and receiving elements of the MIMO scheme

    Convergence of packet communications over the evolved mobile networks; signal processing and protocol performance

    Get PDF
    In this thesis, the convergence of packet communications over the evolved mobile networks is studied. The Long Term Evolution (LTE) process is dominating the Third Generation Partnership Project (3GPP) in order to bring technologies to the markets in the spirit of continuous innovation. The global markets of mobile information services are growing towards the Mobile Information Society. The thesis begins with the principles and theories of the multiple-access transmission schemes, transmitter receiver techniques and signal processing algorithms. Next, packet communications and Internet protocols are referred from the IETF standards with the characteristics of mobile communications in the focus. The mobile network architecture and protocols bind together the evolved packet system of Internet communications to the radio access network technologies. Specifics of the traffic models are shortly visited for their statistical meaning in the radio performance analysis. Radio resource management algorithms and protocols, also procedures, are covered addressing their relevance for the system performance. Throughout these Chapters, the commonalities and differentiators of the WCDMA, WCDMA/HSPA and LTE are covered. The main outcome of the thesis is the performance analysis of the LTE technology beginning from the early discoveries to the analysis of various system features and finally converging to an extensive system analysis campaign. The system performance is analysed with the characteristics of voice over the Internet and best effort traffic of the Internet. These traffic classes represent the majority of the mobile traffic in the converged packet networks, and yet they are simple enough for a fair and generic analysis of technologies. The thesis consists of publications and inventions created by the author that proposed several improvements to the 3G technologies towards the LTE. In the system analysis, the LTE showed by the factor of at least 2.5 to 3 times higher system measures compared to the WCDMA/HSPA reference. The WCDMA/HSPA networks are currently available with over 400 million subscribers and showing increasing growth, in the meanwhile the first LTE roll-outs are scheduled to begin in 2010. Sophisticated 3G LTE mobile devices are expected to appear fluently for all consumer segments in the following years
    corecore