1,958 research outputs found

    Efficient Fast-Convolution-Based Waveform Processing for 5G Physical Layer

    Get PDF
    This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    A resource management scheme for multi-user GFDM with adaptive modulation in frequency selective fading channels

    Get PDF
    The topic is "Low-latency communication for machine-type communication in LTE-A" and need to be specified in more detail.This final project focus on designing and evaluating a resource management scheme for a multi-user generalized frequency division multiplexing (GFDM) system, when a frequency selective fading channel and adaptive modulation is used. GFDM with adaptive subcarrier, sub-symbol and power allocation are considered. Assuming that the transmitter has a perfect knowledge of the instantaneous channel gains for all users, I propose a multi-user GFDM subcarrier, sub-symbol and power allocation algorithm to minimize the total transmit power. This work analyzes the performance of using a specific set of parameters for aligning GFDM with long term evolution (LTE) grid. The results show that the performance of the proposed algorithm using GFDM is closer to the performance of using OFDM and outperforms multiuser GFDM systems with static frequency division multiple access (FDMA) techniques which employ fixed subcarrier allocation schemes. The advantage between GFDM and OFDM is that the latency of the system can be reduced by a factor of 15 if independent demodulation is considered.El objetivo de este proyecto final es el de diseñar y evaluar un esquema para administrar los recursos de un sistema multi-usuario donde se utiliza generalized frequency division multiplexing (GFDM), cuando el canal es de frequencia de desvanecimiento selectivo y se utiliza modulación adaptiva. Consideramos un sistema GFDM con subportadora, sub-símbolo i asignación de potencia adaptiva. Asumiendo que el transmisor conoce perfectamente el estado del canal para todos los usuarios, propongo un algoritmo que asigna los recursos de forma que la potencia total de transmisión es mínima. Este trabajo analiza la eficiencia de utilizar un grupo de parámetros concretos para alinear el sistema GFDM con el sistema de LTE. Los resultados muestran que el comportamiento del algoritmo en GFDM es muy similar al de OFDM, pero mucho mayor que cuando se compara con sistemas de asignación de recursos estáticos.L’objectiu d’aquest projecte final es dissenyar i avaluar un esquema per administrar els recursos per a un sistema multi-usuari fent servir generalized frequency division multiplexing (GFDM), quan el canal es de freqüència esvaniment selectiu i es fa servir modulació adaptativa. Considerem un sistema GFDM amb subportadora, sub-símbol i assignació de potencia adaptativa. Assumint que el transmissor coneix perfectament l’estat del canal per tots els usuaris, proposo un algoritme que assigna els recursos de forma que la potencia total de transmissió es la mínima. Aquest treball analitza l’eficiència de fer servir un grup de paràmetres concrets per tal d’alinear el sistema GFDM amb el sistema de LTE. Els resultats mostren que el comportament de l’algoritme en GFDM es molt similar al de OFDM i que millora bastant els resultats quan el comparem amb sistemes d’assignament de recursos estàtics

    Low-power Physical-layer Design for LTE Based Very NarrowBand IoT (VNB - IoT) Communication

    Get PDF
    abstract: With the new age Internet of Things (IoT) revolution, there is a need to connect a wide range of devices with varying throughput and performance requirements. In this thesis, a wireless system is proposed which is targeted towards very low power, delay insensitive IoT applications with low throughput requirements. The low cost receivers for such devices will have very low complexity, consume very less power and hence will run for several years. Long Term Evolution (LTE) is a standard developed and administered by 3rd Generation Partnership Project (3GPP) for high speed wireless communications for mobile devices. As a part of Release 13, another standard called narrowband IoT (NB-IoT) was introduced by 3GPP to serve the needs of IoT applications with low throughput requirements. Working along similar lines, this thesis proposes yet another LTE based solution called very narrowband IoT (VNB-IoT), which further reduces the complexity and power consumption of the user equipment (UE) while maintaining the base station (BS) architecture as defined in NB-IoT. In the downlink operation, the transmitter of the proposed system uses the NB-IoT resource block with each subcarrier modulated with data symbols intended for a different user. On the receiver side, each UE locks to a particular subcarrier frequency instead of the entire resource block and operates as a single carrier receiver. On the uplink, the system uses a single-tone transmission as specified in the NB-IoT standard. Performance of the proposed system is analyzed in an additive white Gaussian noise (AWGN) channel followed by an analysis of the inter carrier interference (ICI). Relationship between the overall filter bandwidth and ICI is established towards the end.Dissertation/ThesisMasters Thesis Electrical Engineering 201
    corecore