2,796 research outputs found

    Antilope - A Lagrangian Relaxation Approach to the de novo Peptide Sequencing Problem

    Full text link
    Peptide sequencing from mass spectrometry data is a key step in proteome research. Especially de novo sequencing, the identification of a peptide from its spectrum alone, is still a challenge even for state-of-the-art algorithmic approaches. In this paper we present Antilope, a new fast and flexible approach based on mathematical programming. It builds on the spectrum graph model and works with a variety of scoring schemes. Antilope combines Lagrangian relaxation for solving an integer linear programming formulation with an adaptation of Yen's k shortest paths algorithm. It shows a significant improvement in running time compared to mixed integer optimization and performs at the same speed like other state-of-the-art tools. We also implemented a generic probabilistic scoring scheme that can be trained automatically for a dataset of annotated spectra and is independent of the mass spectrometer type. Evaluations on benchmark data show that Antilope is competitive to the popular state-of-the-art programs PepNovo and NovoHMM both in terms of run time and accuracy. Furthermore, it offers increased flexibility in the number of considered ion types. Antilope will be freely available as part of the open source proteomics library OpenMS

    Maximum Margin Clustering for State Decomposition of Metastable Systems

    Full text link
    When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites of this approach are: (1) data are obtained from simulations or experiments which are in global equilibrium and (2) the coordinate system is appropriately selected. Recently, the kinetic clustering approach based on phase space discretization and transition probability estimation has drawn much attention due to its applicability to more general cases, but the choice of discretization policy is a difficult task. In this paper, a new decomposition method designated as maximum margin metastable clustering is proposed, which converts the problem of metastable state decomposition to a semi-supervised learning problem so that the large margin technique can be utilized to search for the optimal decomposition without phase space discretization. Moreover, several simulation examples are given to illustrate the effectiveness of the proposed method

    Molecular Formula Identification using High Resolution Mass Spectrometry: Algorithms and Applications in Metabolomics and Proteomics

    Get PDF
    Wir untersuchen mehrere theoretische und praktische Aspekte der Identifikation der Summenformel von Biomolekülen mit Hilfe von hochauflösender Massenspektrometrie. Durch die letzten Forschritte in der Instrumentation ist die Massenspektrometrie (MS) zur einen der Schlüsseltechnologien für die Analyse von Biomolekülen in der Proteomik und Metabolomik geworden. Sie misst die Massen der Moleküle in der Probe mit hoher Genauigkeit, und ist für die Messdatenerfassung im Hochdurchsatz gut geeignet. Eine der Kernaufgaben in der MS-basierten Proteomik und Metabolomik ist die Identifikation der Moleküle in der Probe. In der Metabolomik unterliegen Metaboliten der Strukturaufklärung, beginnend bei der Summenformel eines Moleküls, d.h. der Anzahl der Atome jedes Elements. Dies ist der entscheidende Schritt in der Identifikation eines unbekannten Metabolits, da die festgelegte Formel die Anzahl der möglichen Molekülstrukturen auf eine viel kleinere Menge reduziert, die mit Methoden der automatischen Strukturaufklärung weiter analysiert werden kann. Nach der Vorverarbeitung ist die Ausgabe eines Massenspektrometers eine Liste von Peaks, die den Molekülmassen und deren Intensitäten, d.h. der Anzahl der Moleküle mit einer bestimmten Masse, entspricht. Im Prinzip können die Summenformel kleiner Moleküle nur mit präzisen Massen identifiziert werden. Allerdings wurde festgestellt, dass aufgrund der hohen Anzahl der chemisch legitimer Formeln in oberen Massenbereich eine exzellente Massengenaugkeit alleine für die Identifikation nicht genügt. Hochauflösende MS erlaubt die Bestimmung der Molekülmassen und Intensitäten mit hervorragender Genauigkeit. In dieser Arbeit entwickeln wir mehrere Algorithmen und Anwendungen, die diese Information zur Identifikation der Summenformel der Biomolekülen anwenden

    Analysis of histone post translational modifications in primary monocyte derived macrophages using reverse phase×reverse phase chromatography in conjunction with porous graphitic carbon stationary phase.

    Get PDF
    A two dimensional-liquid chromatography (2D-LC) based approach was developed for the identification and quantification of histone post translational modifications in conjunction with mass spectrometry analysis. Using a bottom-up strategy, offline 2D-LC was developed using reverse phase chromatography. A porous graphitic carbon stationary phase in the first dimension and a C18 stationary phase in the second dimension interfaced with mass spectrometry was used to analyse global levels of histone post translational modifications in human primary monocyte-derived macrophages. The results demonstrated that 84 different histone peptide proteoforms, with modifications at 18 different sites including combinatorial marks were identified, representing an increase in the identification of histone peptides by 65% and 51% compared to two different 1D-LC approaches on the same mass spectrometer. The use of the porous graphitic stationary phase in the first dimension resulted in efficient separation of histone peptides across the gradient, with good resolution and is orthogonal to the online C18 reverse phase chromatography. Overall, more histone peptides were identified using the 2D-LC approach compared to conventional 1D-LC approaches. In addition, a bioinformatic pipeline was developed in-house to enable the high throughput efficient and accurate quantification of fractionated histone peptides. The automation of a section of the downstream analysis pipeline increased the throughput of the 2D-LC-MS/MS approach for the quantification of histone post translational modifications

    Role of clinical bioinformatics in the development of network-based Biomarkers

    Get PDF
    Network biomarker as a new type of biomarkers with protein-protein interactions was initiated and investigated with the integration of knowledge on protein annotations, interaction, and signaling pathway. A number of methodologies and computational programs have been developed to integrate selected proteins into the knowledge-based networks via the combination of genomics, proteomics and bioinformatics. Alterations of network biomarkers can be monitored and evaluated at different stages and time points during the development of diseases, named dynamic network biomarkers. Dynamic network biomarkers should be furthermore correlated with clinical informatics, including patient complaints, history, therapies, clinical symptoms and signs, physician's examinations, biochemical analyses, imaging profiles, pathologies and other measurements

    Quantification and Simulation of Liquid Chromatography-Mass Spectrometry Data

    Get PDF
    Computational mass spectrometry is a fast evolving field that has attracted increased attention over the last couple of years. The performance of software solutions determines the success of analysis to a great extent. New algorithms are required to reflect new experimental procedures and deal with new instrument generations. One essential component of algorithm development is the validation (as well as comparison) of software on a broad range of data sets. This requires a gold standard (or so-called ground truth), which is usually obtained by manual annotation of a real data set. Comprehensive manually annotated public data sets for mass spectrometry data are labor-intensive to produce and their quality strongly depends on the skill of the human expert. Some parts of the data may even be impossible to annotate due to high levels of noise or other ambiguities. Furthermore, manually annotated data is usually not available for all steps in a typical computational analysis pipeline. We thus developed the most comprehensive simulation software to date, which allows to generate multiple levels of ground truth and features a plethora of settings to reflect experimental conditions and instrument settings. The simulator is used to generate several distinct types of data. The data are subsequently employed to evaluate existing algorithms. Additionally, we employ simulation to determine the influence of instrument attributes and sample complexity on the ability of algorithms to recover information. The results give valuable hints on how to optimize experimental setups. Furthermore, this thesis introduces two quantitative approaches, namely a decharging algorithm based on integer linear programming and a new workflow for identification of differentially expressed proteins for a large in vitro study on toxic compounds. Decharging infers the uncharged mass of a peptide (or protein) by clustering all its charge variants. The latter occur frequently under certain experimental conditions. We employ simulation to show that decharging is robust against missing values even for high complexity data and that the algorithm outperforms other solutions in terms of mass accuracy and run time on real data. The last part of this thesis deals with a new state-of-the-art workflow for protein quantification based on isobaric tags for relative and absolute quantitation (iTRAQ). We devise a new approach to isotope correction, propose an experimental design, introduce new metrics of iTRAQ data quality, and confirm putative properties of iTRAQ data using a novel approach. All tools developed as part of this thesis are implemented in OpenMS, a C++ library for computational mass spectrometry

    Identification of ultramodified proteins using top-down tandem mass spectra

    Get PDF
    Post-translational modifications (PTMs) play an important role in various biological processes through changing protein structure and function. Some ultramodified proteins (like histones) have multiple PTMs forming PTM patterns that define the functionality of a protein. While bottom-up mass spectrometry (MS) has been successful in identifying individual PTMs within short peptides, it is unable to identify PTM patterns spreading along entire proteins in a coordinated fashion. In contrast, top-down MS analyzes intact proteins and reveals PTM patterns along the entire proteins. However, while recent advances in instrumentation have made top-down MS accessible to many laboratories, most computational tools for top-down MS focus on proteins with few PTMs and are unable to identify complex PTM patterns. We propose a new algorithm, MS-Align-E, that identifies both expected and unexpected PTMs in ultramodified proteins. We demonstrate that MS-Align-E identifies many proteoforms of histone H4 and benchmark it against the currently accepted software tools
    corecore