98,756 research outputs found

    Ego-Downward and Ambient Video based Person Location Association

    Full text link
    Using an ego-centric camera to do localization and tracking is highly needed for urban navigation and indoor assistive system when GPS is not available or not accurate enough. The traditional hand-designed feature tracking and estimation approach would fail without visible features. Recently, there are several works exploring to use context features to do localization. However, all of these suffer severe accuracy loss if given no visual context information. To provide a possible solution to this problem, this paper proposes a camera system with both ego-downward and third-static view to perform localization and tracking in a learning approach. Besides, we also proposed a novel action and motion verification model for cross-view verification and localization. We performed comparative experiments based on our collected dataset which considers the same dressing, gender, and background diversity. Results indicate that the proposed model can achieve 18.32%18.32 \% improvement in accuracy performance. Eventually, we tested the model on multi-people scenarios and obtained an average 67.767%67.767 \% accuracy

    Target recognitions in multiple camera CCTV using colour constancy

    Get PDF
    People tracking using colour feature in crowded scene through CCTV network have been a popular and at the same time a very difficult topic in computer vision. It is mainly because of the difficulty for the acquisition of intrinsic signatures of targets from a single view of the scene. Many factors, such as variable illumination conditions and viewing angles, will induce illusive modification of intrinsic signatures of targets. The objective of this paper is to verify if colour constancy (CC) approach really helps people tracking in CCTV network system. We have testified a number of CC algorithms together with various colour descriptors, to assess the efficiencies of people recognitions from real multi-camera i-LIDS data set via Receiver Operating Characteristics (ROC). It is found that when CC is applied together with some form of colour restoration mechanisms such as colour transfer, the recognition performance can be improved by at least a factor of two. An elementary luminance based CC coupled with a pixel based colour transfer algorithm, together with experimental results are reported in the present paper

    OpenPTrack: Open Source Multi-Camera Calibration and People Tracking for RGB-D Camera Networks

    Get PDF
    OpenPTrack is an open source software for multi-camera calibration and people tracking in RGB-D camera networks. It allows to track people in big volumes at sensor frame rate and currently supports a heterogeneous set of 3D sensors. In this work, we describe its user-friendly calibration procedure, which consists of simple steps with real-time feedback that allow to obtain accurate results in estimating the camera poses that are then used for tracking people. On top of a calibration based on moving a checkerboard within the tracking space and on a global optimization of cameras and checkerboards poses, a novel procedure which aligns people detections coming from all sensors in a x-y-time space is used for refining camera poses. While people detection is executed locally, in the machines connected to each sensor, tracking is performed by a single node which takes into account detections from all over the network. Here we detail how a cascade of algorithms working on depth point clouds and color, infrared and disparity images is used to perform people detection from different types of sensors and in any indoor light condition. We present experiments showing that a considerable improvement can be obtained with the proposed calibration refinement procedure that exploits people detections and we compare Kinect v1, Kinect v2 and Mesa SR4500 performance for people tracking applications. OpenPTrack is based on the Robot Operating System and the Point Cloud Library and has already been adopted in networks composed of up to ten imagers for interactive arts, education, culture and human\u2013robot interaction applications

    Characterization of a Multi-User Indoor Positioning System Based on Low Cost Depth Vision (Kinect) for Monitoring Human Activity in a Smart Home

    Get PDF
    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community

    Valvekaameratel pÔhineva inimseire tÀiustamine pildi resolutsiooni parandamise ning nÀotuvastuse abil

    Get PDF
    Due to importance of security in the society, monitoring activities and recognizing specific people through surveillance video camera is playing an important role. One of the main issues in such activity rises from the fact that cameras do not meet the resolution requirement for many face recognition algorithms. In order to solve this issue, in this work we are proposing a new system which super resolve the image. First, we are using sparse representation with the specific dictionary involving many natural and facial images to super resolve images. As a second method, we are using deep learning convulutional network. Image super resolution is followed by Hidden Markov Model and Singular Value Decomposition based face recognition. The proposed system has been tested on many well-known face databases such as FERET, HeadPose, and Essex University databases as well as our recently introduced iCV Face Recognition database (iCV-F). The experimental results shows that the recognition rate is increasing considerably after applying the super resolution by using facial and natural image dictionary. In addition, we are also proposing a system for analysing people movement on surveillance video. People including faces are detected by using Histogram of Oriented Gradient features and Viola-jones algorithm. Multi-target tracking system with discrete-continuouos energy minimization tracking system is then used to track people. The tracking data is then in turn used to get information about visited and passed locations and face recognition results for tracked people

    Robust 3D People Tracking and Positioning System in a Semi-Overlapped Multi-Camera Environment

    Get PDF
    People positioning and tracking in 3D indoor environments are challenging tasks due to background clutter and occlusions. Current works are focused on solving people occlusions in low-cluttered backgrounds, but fail in high-cluttered scenarios, specially when foreground objects occlude people. In this paper, a novel 3D people positioning and tracking system is presented, which shows itself robust to both possible occlusion sources: static scene objects and other people. The system holds on a set of multiple cameras with partially overlapped fields of view. Moving regions are segmented independently in each camera stream by means of a new background modeling strategy based on Gabor filters. People detection is carried out on these segmentations through a template-based correlation strategy. Detected people are tracked independently in each camera view by means of a graph-based matching strategy, which estimates the best correspondences between consecutive people segmentations. Finally, 3D tracking and positioning of people is achieved by geometrical consistency analysis over the tracked 2D candidates, using head position (instead of object centroids) to increase robustness to foreground occlusions

    3D Tracking Using Multi-view Based Particle Filters

    Get PDF
    Visual surveillance and monitoring of indoor environments using multiple cameras has become a field of great activity in computer vision. Usual 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using geometrical relationships across cameras. As 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions), 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. To overcome this problem, this paper proposes a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This method allows to estimate the probability of a certain volume being occupied by a moving object, and thus to segment and track multiple people across the monitored area. The proposed method is developed on the basis of simple, binary 2D moving region segmentation on each camera, considered as different state observations. In addition, the method is proved well suited for integrating additional 2D low-level cues to increase system robustness to occlusions: in this line, a naĂŻve color-based (HSI) appearance model has been integrated, resulting in clear performance improvements when dealing with complex scenarios
    • 

    corecore