32 research outputs found

    TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?

    Get PDF
    Since the proposition of Quality of Service architectures by the IETF, the interaction between TCP and the QoS services has been intensively studied. This paper proposes to look forward to the results obtained in terms of TCP throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service and to present an overview of the different proposals to solve the problem. It has been demonstrated that the standardized IETF DiffServ conditioners such as the token bucket color marker and the time sliding window color maker were not good TCP traffic descriptors. Starting with this point, several propositions have been made and most of them presents new marking schemes in order to replace or improve the traditional token bucket color marker. The main problem is that TCP congestion control is not designed to work with the AF service. Indeed, both mechanisms are antagonists. TCP has the property to share in a fair manner the bottleneck bandwidth between flows while DiffServ network provides a level of service controllable and predictable. In this paper, we build a classification of all the propositions made during these last years and compare them. As a result, we will see that these conditioning schemes can be separated in three sets of action level and that the conditioning at the network edge level is the most accepted one. We conclude that the problem is still unsolved and that TCP, conditioned or not conditioned, remains inappropriate to the DiffServ/AF service

    GTFRC, a TCP friendly QoS-aware rate control for diffserv assured service

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this article describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC). The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow’s RTT and target rate. Simulation measurements and implementation over a real QoS testbed demonstrate the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    gTFRC: a QoS-aware congestion control algorithm

    Get PDF
    This study addresses the end-to-end congestion control support over the DiffServ Assured Forwarding (AF) class. The resulting Assured Service (AS) provides a minimum level of throughput guarantee. In this context, this paper describes a new end-to-end mechanism for continuous transfer based on TCP-Friendly Rate Control (TFRC) originally proposed in [11]. The proposed approach modifies TFRC to take into account the QoS negotiated. This mechanism, named gTFRC, is able to reach the minimum throughput guarantee whatever the flow's RTT and target rate. Simulation measurements show the efficiency of this mechanism either in over-provisioned or exactly-provisioned network. In addition, we show that the gTFRC mechanism can be used in the same DiffServ/AF class with TCP or TFRC flows

    Implementation and performance analysis of a QoS-aware TFRC mechanism

    Get PDF
    This paper deals with the improvement of transport protocol behaviour over the DiffServ Assured Forwarding (AF)class. The Assured Service (AS) provides a minimum throughput guarantee that classical congestion control mechanisms, like window-based in TCP or equation-based in TCP-Friendly Rate Control (TFRC), are not able to use efficiently. In response, this paper proposes a performance analysis of a QoS aware congestion control mechanism, named gTFRC, which improves the delivery of continuous streams. The gTFRC (guaranteed TFRC) mechanism has been integrated into an Enhanced Transport Protocol (ETP) that allows protocol mechanisms to be dynamically managed and controlled. After comparing a ns-2 simulation and our implementation of the basic TFRC mechanism, we show that ETP/gTFRC extension is able to reach a minimum throughput guarantee whatever the flow’s RTT and target rate (TR) and the network provisioning conditions

    Design, implementation and evaluation of a QoS-aware transport protocol

    Get PDF
    In the context of a reconfigurable transport protocol framework, we propose a QoS-aware Transport Protocol (QSTP), specifically designed to operate over QoS-enabled networks with bandwidth guarantee. QSTP combines QoS-aware TFRC congestion control mechanism, which takes into account the network-level bandwidth reservations, with a Selective ACKnowledgment (SACK) mechanism in order to provide a QoS-aware transport service that fill the gap between QoS enabled network services and QoS constraint applications. We have developed a prototype of this protocol in the user-space and conducted a large range of measurements to evaluate this proposal under various network conditions. Our results show that QSTP allows applications to reach their negotiated QoS over bandwidth guaranteed networks, such as DiffServ/AF network, where TCP fails. This protocol appears to be the first reliable protocol especially designed for QoS network architectures with bandwidth guarantee

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco

    Application Adaptive Bandwidth Management Using Real-Time Network Monitoring.

    Get PDF
    Application adaptive bandwidth management is a strategy for ensuring secure and reliable network operation in the presence of undesirable applications competing for a network’s crucial bandwidth, covert channels of communication via non-standard traffic on well-known ports, and coordinated Denial of Service attacks. The study undertaken here explored the classification, analysis and management of the network traffic on the basis of ports and protocols used, type of applications, traffic direction and flow rates on the East Tennessee State University’s campus-wide network. Bandwidth measurements over a nine-month period indicated bandwidth abuse of less than 0.0001% of total network bandwidth. The conclusion suggests the use of the defense-in-depth approach in conjunction with the KHYATI (Knowledge, Host hardening, Yauld monitoring, Analysis, Tools and Implementation) paradigm to ensure effective information assurance

    Provide quality of service for differentiated services networks by policy-based networking

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Mecanismos de facturação segura em redes auto-organizadas

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesAs redes ad-hoc e as redes auto-organizadas constituem uma área de investigação com grande interesse. Estas redes são uteis em cenários onde seja necessária uma rede de baixo custo, elevada adaptabilidade e reduzido tempo de criação. As redes infra-estruturadas, tendo uma gestão centralizada, estão agora a começar a adoptar os conceitos de redes autoorganizadas nas suas arquitecturas. Ao contrário dos sistemas centralizados, redes auto-organizadas requerem que todos os terminais participantes operem de acordo com o melhor interesse da rede. O facto de, em redes ad-hoc, os equipamentos possuírem recursos limitados, pôe em causa este requisito levando a comportamentos egoístas. Este comportamento é espectavel criando problemas nas redes auto-organizativas, ameaçando o funcionamento de uma rede inteira. Algumas propostas foram ja criadas de modo a motivar a sua utilização correcta. Destas, algumas são baseadas em trocas de credito entre utilizadores, outras preveêm a existência de entidades gestoras de creditos. Estas ultimas propostas, que irão ser o foco desta dissertação, permitem a facil integração de redes ad-hoc com redes infra-estruturadas e geridas por um operador. Este trabalho descreve o estado da arte actual e, com algum detalhe, os métodos utilizados e as solucões relevantes para esta area. São propostas duas novas soluções de taxação para estas redes. Ambas as soluções possibilitam a integração das redes com metodos de taxação habituais em redes geridas por operadores. Para além disto, a motivação à participaçãao é aumentada através de incentivos ao encaminhamento de pacotes. Todos os processos são criptograficamente seguros através da utilização de métodos standard como DSA sobre Curvas Elípticas e funções de síntese robustas. As soluções propostas são descritas analiticamente e analisadas, sendo os os resultados obtidos comparados com outra proposta do estado da arte. Um exaustivo trabalho de simulação é igualmente descrito de forma a avaliar as soluções em cenários mais complexos. Os resultados obtidos em simulação são avaliados tendo em conta a variação de várias métricas como mobilidade, carga na rede, protocolo de encaminhamento e protocolo de transporte. No final, a arquitectura, implementação e resultados obtidos com uma implementação real de uma das propostas e os seus resultados analisados.Self-organised and ad-hoc networks are an area with an existing large research community. These networks are much useful in scenarios requiring a rapidly deployed, low cost and highly adaptable network. Recently, infrastructure networks, which are managed in a much centralised form, are starting to introduce concepts of self-organised networks in its architecture. In opposition to centralised systems, self-organisation creates the necessity for all nodes to behave according to the best interest of the network. The fact that in many ad-hoc networks nodes have scarce resources poses some threats to this requirement. As resources decreases, such as battery or wireless bandwidth, nodes can start acting selfishly. This behaviour is known to bring damage to self-organised networks and threatens the entire network. Several proposals were made in order to promote the correct usage of the network. Some proposals are based on local information and direct credit exchange while others envision the existence of a central bank. The later solutions are further elaborated in this thesis, as they make possible integration of ad-hoc network with operator driven infrastructures. This work presents the current state-of-the-art on the area providing a detailed insight on the methods adopted by each solution presented. Two novel solutions are proposed providing charging support for integrated ad-hoc networks. Both solutions provide means of integration with standard management methods found in operator networks. Also, node´s motivation is increased through the reward of nodes forwarding data packets. The entire process is cryptographically secure, making use of standard methods such as Elliptic Curve DSA and strong digest functions. The solutions proposed are described and analysed analytically, comparing the results with other state-of-the-art proposals. Extensive simulation work is also presented which furthers evaluates the solutions in complex scenarios. Results are obtained from these scenarios and several metrics are evaluated taking in consideration mobility, network load, routing protocol and transport protocol. The architecture and results obtained with a real implementation are finally presented and analysed

    Toward a versatile transport protocol

    Get PDF
    Les travaux présentés dans cette thèse ont pour but d'améliorer la couche transport de l'architecture réseau de l'OSI. La couche transport est de nos jour dominée par l'utilisation de TCP et son contrôle de congestion. Récemment de nouveaux mécanismes de contrôle de congestion ont été proposés. Parmi eux TCP Friendly Rate Control (TFRC) semble être le plus abouti. Cependant, tout comme TCP, ce mécanisme ne prend pas en compte ni les évolutions du réseau ni les nouveaux besoins des applications. La première contribution de cette thèse consiste en une spécialisation de TFRC afin d'obtenir un protocole de transport avisé de la Qualité de Service (QdS) spécialement défini pour des réseaux à QdS offrant une garantie de bande passante. Ce protocole combine un mécanisme de contrôle de congestion orienté QdS qui prend en compte la réservation de bande passante au niveau réseau, avec un service de fiabilité totale afin de proposer un service similaire à TCP. Le résultat de cette composition constitue le premier protocole de transport adapté à des réseau à garantie de bande passante. En même temps que cette expansion de service au niveau réseau, de nouvelles technologies ont été proposées et déployées au niveau physique. Ces nouvelles technologies sont caractérisées par leur affranchissement de support filaire et la mobilité des systèmes terminaux. De plus, elles sont généralement déployées sur des entités où la puissance de calcul et la disponibilité mémoire sont inférieures à celles des ordinateurs personnels. La deuxième contribution de cette thèse est la proposition d'une adaptation de TFRC à ces entités via la proposition d'une version allégée du récepteur. Cette version a été implémentée, évaluée quantitativement et ses nombreux avantages et contributions ont été démontrés par rapport à TFRC. Enfin, nous proposons une optimisation des implémentations actuelles de TFRC. Cette optimisation propose tout d'abord un nouvel algorithme pour l'initialisation du récepteur basé sur l'utilisation de l'algorithme de Newton. Nous proposons aussi l'introduction d'un outil nous permettant d'étudier plus en détails la manière dont est calculé le taux de perte du côté récepteur. ABSTRACT : This thesis presents three main contributions that aim to improve the transport layer of the current networking architecture. The transport layer is nowadays overruled by the use of TCP and its congestion control. Recently new congestion control mechanisms have been proposed. Among them, TCP Friendly Rate Control (TFRC) appears to be one of the most complete. Nevertheless this congestion control mechanism, as TCP, does not take into account either the evolution of the network in terms of Quality of Service and mobility or the evolution of the applications. The first contribution of this thesis is a specialisation TFRC congestion control to propose a QoS-aware Transport Protocol specifically designed to operate over QoS-enabled networks with bandwidth guarantee mechanisms. This protocol combines a QoS-aware congestion control, which takes into account networklevel bandwidth reservations, with full reliability in order mechanism to provide a transport service similar to TCP. As a result, we obtain the guaranteed throughput at the application level where TCP fails. This protocol is the first transport protocol compliant with bandwidth guaranteed networks. At the same time the set of network services expands, new technologies have been proposed and deployed at the physical layer. These new technologies are mainly characterised by communications done without wire constraint and the mobility of the end-systems. Furthermore, these technologies are usually deployed on entities where the CPU power and memory storage are limited. The second contribution of this thesis is therefore to propose an adaptation of TFRC to these entities. This is accomplished with the proposition of a new sender-based version of TFRC. This version has been implemented, evaluated and its numerous contributions and advantages compare to usual TFRC version have been demonstrated. Finally, we proposed an optimisation of actual implementations of TFRC. This optimisation first consists in the proposition of an algorithm based on a numerical analysis of the equation used in TFRC and the use of the Newton's algorithm. We furthermore give a first step, with the introduction of a new framework for TFRC, in order to better understand TFRC behaviour and to optimise the computation of the packet loss rate according to loss probability distribution
    corecore