219 research outputs found

    Parametrization and penalties in spline models with an application to survival analysis

    Get PDF
    In this paper we show how a simple parametrization, built from the definition of cubic splines, can aid in the implementation and interpretation of penalized spline models, whatever configuration of knots we choose to use. We call this parametrization value-first derivative parametrization. We perform Bayesian inference by exploring the natural link between quadratic penalties and Gaussian priors. However, a full Bayesian analysis seems feasible only for some penalty functionals. Alternatives include empirical Bayes methods involving model selection type criteria. The proposed methodology is illustrated by an application to survival analysis where the usual Cox model is extended to allow for time-varying regression coefficients

    Variable Selection and Model Choice in Structured Survival Models

    Get PDF
    In many situations, medical applications ask for flexible survival models that allow to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. These structured survival models are very flexible but additional difficulties arise when model choice and variable selection is desired. In particular, it has to be decided which covariates should be assigned time-varying effects or whether parametric modeling is sufficient for a given covariate. Component-wise boosting provides a means of likelihood-based model fitting that enables simultaneous variable selection and model choice. We introduce a component-wise likelihood-based boosting algorithm for survival data that permits the inclusion of both parametric and nonparametric time-varying effects as well as nonparametric effects of continuous covariates utilizing penalized splines as the main modeling technique. Its properties and performance are investigated in simulation studies. The new modeling approach is used to build a flexible survival model for intensive care patients suffering from severe sepsis. A software implementation is available to the interested reader

    Gray's time-varying coefficients model for posttransplant survival of pediatric liver transplant recipients with a diagnosis of cancer

    Get PDF
    Transplantation is often the only viable treatment for pediatric patients with end-stage liver disease. Making well-informed decisions on when to proceed with transplantation requires accurate predictors of transplant survival. The standard Cox proportional hazards (PH) model assumes that covariate effects are time-invariant on right-censored failure time; however, this assumption may not always hold. Gray's piecewise constant time-varying coefficients (PC-TVC) model offers greater flexibility to capture the temporal changes of covariate effects without losing the mathematical simplicity of Cox PH model. In the present work, we examined the Cox PH and Gray PC-TVC models on the posttransplant survival analysis of 288 pediatric liver transplant patients diagnosed with cancer. We obtained potential predictors through univariable (P < 0.15) and multivariable models with forward selection (P < 0.05) for the Cox PH and Gray PC-TVC models, which coincide. While the Cox PH model provided reasonable average results in estimating covariate effects on posttransplant survival, the Gray model using piecewise constant penalized splines showed more details of how those effects change over time. © 2013 Yi Ren et al

    Nonlinear association structures in flexible Bayesian additive joint models

    Full text link
    Joint models of longitudinal and survival data have become an important tool for modeling associations between longitudinal biomarkers and event processes. The association between marker and log-hazard is assumed to be linear in existing shared random effects models, with this assumption usually remaining unchecked. We present an extended framework of flexible additive joint models that allows the estimation of nonlinear, covariate specific associations by making use of Bayesian P-splines. Our joint models are estimated in a Bayesian framework using structured additive predictors for all model components, allowing for great flexibility in the specification of smooth nonlinear, time-varying and random effects terms for longitudinal submodel, survival submodel and their association. The ability to capture truly linear and nonlinear associations is assessed in simulations and illustrated on the widely studied biomedical data on the rare fatal liver disease primary biliary cirrhosis. All methods are implemented in the R package bamlss to facilitate the application of this flexible joint model in practice.Comment: Changes to initial commit: minor language editing, additional information in Section 4, formatting in Supplementary Informatio

    A semiparametric recurrent events model with time-varying coefficients

    Get PDF
    We consider a recurrent events model with time-varying coefficients motivated by two clinical applications. We use a random effects (Gaussian frailty) model to describe the intensity of recurrent events. The model can accommodate both time-varying and time-constant coefficients. We use the penalized spline method to estimate the time-varying coefficients. We use Laplace approximation to evaluate the penalized likelihood without a closed form. We estimate the smoothing parameters in a similar way to variance components. We conduct simulations to evaluate the performance of the estimates for both time-varying and time-independent coefficients. We apply this method to analyze two data sets: a stroke study and a child wheeze study

    Building Cox-Type Structured Hazard Regression Models with Time-Varying Effects

    Get PDF
    In recent years, flexible hazard regression models based on penalised splines have been developed that allow us to extend the classical Cox-model via the inclusion of time-varying and nonparametric effects. Despite their immediate appeal in terms of flexibility, these models introduce additional difficulties when a subset of covariates and the corresponding modelling alternatives have to be chosen. We present an analysis of data from a specific patient population with 90-day survival as the response variable. The aim is to determine a sensible prognostic model where some variables have to be included due to subject-matter knowledge while other variables are subject to model selection. Motivated by this application, we propose a twostage stepwise model building strategy to choose both the relevant covariates and the corresponding modelling alternatives within the choice set of possible covariates simultaneously. For categorical covariates, competing modelling approaches are linear effects and time-varying effects, whereas nonparametric modelling provides a further alternative in case of continuous covariates. In our data analysis, we identified a prognostic model containing both smooth and time-varying effects

    Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression

    Get PDF
    Ordinary linear and generalized linear regression models relate the mean of a response variable to a linear combination of covariate effects and, as a consequence, focus on average properties of the response. Analyzing childhood malnutrition in developing or transition countries based on such a regression model implies that the estimated effects describe the average nutritional status. However, it is of even larger interest to analyze quantiles of the response distribution such as the 5% or 10% quantile that relate to the risk of children for extreme malnutrition. In this paper, we analyze data on childhood malnutrition collected in the 2005/2006 India Demographic and Health Survey based on a semiparametric extension of quantile regression models where nonlinear effects are included in the model equation, leading to additive quantile regression. The variable selection and model choice problems associated with estimating an additive quantile regression model are addressed by a novel boosting approach. Based on this rather general class of statistical learning procedures for empirical risk minimization, we develop, evaluate and apply a boosting algorithm for quantile regression. Our proposal allows for data-driven determination of the amount of smoothness required for the nonlinear effects and combines model selection with an automatic variable selection property. The results of our empirical evaluation suggest that boosting is an appropriate tool for estimation in linear and additive quantile regression models and helps to identify yet unknown risk factors for childhood malnutrition
    corecore