888 research outputs found

    Penalized Graph Partitioning based Allocation Strategy for Database-as-a-Service Systems

    Get PDF
    Databases as a service (DBaaS) transfer the advantages of cloud computing to data management systems, which is important for the big data era. The allocation in a DBaaS system, i.e., the mapping from databases to nodes of the infrastructure, influences performance, utilization, and cost-effectiveness of the system. Modeling databases and the underlying infrastructure as weighted graphs and using graph partitioning and mapping algorithms yields an allocation strategy. However, graph partitioning assumes that individual vertex weights add up (linearly) to partition weights. In reality, performance does usually not scale linearly with the amount of work due to contention on the hardware, on operating system resources, or on DBMS components. To overcome this issue, we propose an allocation strategy based on penalized graph partitioning in this paper. We show how existing algorithms can be modified for graphs with non-linear partition weights, i.e., vertex weights that do not sum up linearly to partition weights. We experimentally evaluate our allocation strategy in a DBaaS system with 1,000 databases on 32 nodes

    Network Partitioning in Distributed Agent-Based Models

    Get PDF
    Agent-Based Models (ABMs) are an emerging simulation paradigm for modeling complex systems, comprised of autonomous, possibly heterogeneous, interacting agents. The utility of ABMs lies in their ability to represent such complex systems as self-organizing networks of agents. Modeling and understanding the behavior of complex systems usually occurs at large and representative scales, and often obtaining and visualizing of simulation results in real-time is critical. The real-time requirement necessitates the use of in-memory computing, as it is difficult and challenging to handle the latency and unpredictability of disk accesses. Combining this observation with the scale requirement emphasizes the need to use parallel and distributed computing platforms, such as MPI-enabled CPU clusters. Consequently, the agent population must be partitioned across different CPUs in a cluster. Further, the typically high volume of interactions among agents can quickly become a significant bottleneck for real-time or large-scale simulations. The problem is exacerbated if the underlying ABM network is dynamic and the inter-process communication evolves over the course of the simulation. Therefore, it is critical to develop topology-aware partitioning mechanisms to support such large simulations. In this dissertation, we demonstrate that distributed agent-based model simulations benefit from the use of graph partitioning algorithms that involve a local, neighborhood-based perspective. Such methods do not rely on global accesses to the network and thus are more scalable. In addition, we propose two partitioning schemes that consider the bottom-up individual-centric nature of agent-based modeling. The First technique utilizes label-propagation community detection to partition the dynamic agent network of an ABM. We propose a latency-hiding, seamless integration of community detection in the dynamics of a distributed ABM. To achieve this integration, we exploit the similarity in the process flow patterns of a label-propagation community-detection algorithm and self-organizing ABMs. In the second partitioning scheme, we apply a combination of the Guided Local Search (GLS) and Fast Local Search (FLS) metaheuristics in the context of graph partitioning. The main driving principle of GLS is the dynamic modi?cation of the objective function to escape local optima. The algorithm augments the objective of a local search, thereby transforming the landscape structure and escaping a local optimum. FLS is a local search heuristic algorithm that is aimed at reducing the search space of the main search algorithm. It breaks down the space into sub-neighborhoods such that inactive sub-neighborhoods are removed from the search process. The combination of GLS and FLS allowed us to design a graph partitioning algorithm that is both scalable and sensitive to the inherent modularity of real-world networks

    Allocation Strategies for Data-Oriented Architectures

    Get PDF
    Data orientation is a common design principle in distributed data management systems. In contrast to process-oriented or transaction-oriented system designs, data-oriented architectures are based on data locality and function shipping. The tight coupling of data and processing thereon is implemented in different systems in a variety of application scenarios such as data analysis, database-as-a-service, and data management on multiprocessor systems. Data-oriented systems, i.e., systems that implement a data-oriented architecture, bundle data and operations together in tasks which are processed locally on the nodes of the distributed system. Allocation strategies, i.e., methods that decide the mapping from tasks to nodes, are core components in data-oriented systems. Good allocation strategies can lead to balanced systems while bad allocation strategies cause skew in the load and therefore suboptimal application performance and infrastructure utilization. Optimal allocation strategies are hard to find given the complexity of the systems, the complicated interactions of tasks, and the huge solution space. To ensure the scalability of data-oriented systems and to keep them manageable with hundreds of thousands of tasks, thousands of nodes, and dynamic workloads, fast and reliable allocation strategies are mandatory. In this thesis, we develop novel allocation strategies for data-oriented systems based on graph partitioning algorithms. Therefore, we show that systems from different application scenarios with different abstraction levels can be generalized to generic infrastructure and workload descriptions. We use weighted graph representations to model infrastructures with bounded and unbounded, i.e., overcommited, resources and possibly non-linear performance characteristics. Based on our generalized infrastructure and workload model, we formalize the allocation problem, which seeks valid and balanced allocations that minimize communication. Our allocation strategies partition the workload graph using solution heuristics that work with single and multiple vertex weights. Novel extensions to these solution heuristics can be used to balance penalized and secondary graph partition weights. These extensions enable the allocation strategies to handle infrastructures with non-linear performance behavior. On top of the basic algorithms, we propose methods to incorporate heterogeneous infrastructures and to react to changing workloads and infrastructures by incrementally updating the partitioning. We evaluate all components of our allocation strategy algorithms and show their applicability and scalability with synthetic workload graphs. In end-to-end--performance experiments in two actual data-oriented systems, a database-as-a-service system and a database management system for multiprocessor systems, we prove that our allocation strategies outperform alternative state-of-the-art methods

    Recent Advances in Fully Dynamic Graph Algorithms

    Full text link
    In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)
    corecore