801 research outputs found

    Desing and Validation of a Light Inference System to Support Embedded Context Reasoning

    Full text link
    Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.

    Combining ontologies and rules with clinical archetypes

    Get PDF
    Al igual que otros campos que dependen en gran medida de las funcionalidades ofrecidas por las tecnologías de la información y las comunicaciones (IT), la biomedicina y la salud necesitan cada vez más la implantación de normas y mecanismos ampliamente aceptados para el intercambio de datos, información y conocimiento. Dicha necesidad de compatibilidad e interoperabilidad va más allá de las cuestiones sintácticas y estructurales, pues la interoperabilidad semántica es también requerida. La interoperabilidad a nivel semántico es esencial para el soporte computarizado de alertas, flujos de trabajo y de la medicina basada en evidencia cuando contamos con la presencia de sistemas heterogéneos de Historia Clínica Electrónica (EHR). El modelo de arquetipos clínicos respaldado por el estándar CEN/ISO EN13606 y la fundación openEHR ofrece un mecanismo para expresar las estructuras de datos clínicos de manera compartida e interoperable. El modelo ha ido ganando aceptación en los últimos años por su capacidad para definir conceptos clínicos basados en un Modelo de Referencia común. Dicha separación a dos capas permite conservar la heterogeneidad de las implementaciones de almacenamiento a bajo nivel, presentes en los diferentes sistemas de EHR. Sin embargo, los lenguajes de arquetipos no soportan la representación de reglas clínicas ni el mapeo a ontologías formales, ambos elementos fundamentales para alcanzar la interoperabilidad semántica completa pues permiten llevar a cabo el razonamiento y la inferencia a partir del conocimiento clínico existente. Paralelamente, es reconocido el hecho de que la World Wide Web presenta requisitos análogos a los descritos anteriormente, lo cual ha fomentado el desarrollo de la Web Semántica. El progreso alcanzado en este terreno, con respecto a la representación del conocimiento y al razonamiento sobre el mismo, es combinado en esta tesis con los modelos de EHR con el objetivo de mejorar el enfoque de los arquetipos clínicos y ofrecer funcionalidades que se corresponden con nivel más alto de interoperabilidad semántica. Concretamente, la investigación que se describe a continuación presenta y evalúa un enfoque para traducir automáticamente las definiciones expresadas en el lenguaje de definición de arquetipos de openEHR (ADL) a una representación formal basada en lenguajes de ontologías. El método se implementa en la plataforma ArchOnt, que también es descrita. A continuación se estudia la integración de dichas representaciones formales con reglas clínicas, ofreciéndose un enfoque para reutilizar el razonamiento con instancias concretas de datos clínicos. Es importante ver como el acto de compartir el conocimiento clínico expresado a través de reglas es coherente con la filosofía de intercambio abierto fomentada por los arquetipos, a la vez que se extiende la reutilización a proposiciones de conocimiento declarativo como las utilizadas en las guías de práctica clínica. De esta manera, la tesis describe una técnica de mapeo de arquetipos a ontologías, para luego asociar reglas clínicas a la representación resultante. La traducción automática también permite la conexión formal de los elementos especificados en los arquetipos con conceptos clínicos equivalentes provenientes de otras fuentes como son las terminologías clínicas. Dichos enlaces fomentan la reutilización del conocimiento clínico ya representado, así como el razonamiento y la navegación a través de distintas ontologías clínicas. Otra contribución significativa de la tesis es la aplicación del enfoque mencionado en dos proyectos de investigación y desarrollo clínico, llevados a cabo en combinación con hospitales universitarios de Madrid. En la explicación se incluyen ejemplos de las aplicaciones más representativas del enfoque como es el caso del desarrollo de sistemas de alertas orientados a mejorar la seguridad del paciente. No obstante, la traducción automática de arquetipos clínicos a lenguajes de ontologías constituye una base común para la implementación de una amplia gama de actividades semánticas, razonamiento y validación, evitándose así la necesidad de aplicar distintos enfoques ad-hoc directamente sobre los arquetipos para poder satisfacer las condiciones de cada contexto

    A novel context ontology to facilitate interoperation of semantic services in environments with wearable devices

    Full text link
    The LifeWear-Mobilized Lifestyle with Wearables (Lifewear) project attempts to create Ambient Intelligence (AmI) ecosystems by composing personalized services based on the user information, environmental conditions and reasoning outputs. Two of the most important benefits over traditional environments are 1) take advantage of wearable devices to get user information in a nonintrusive way and 2) integrate this information with other intelligent services and environmental sensors. This paper proposes a new ontology composed by the integration of users and services information, for semantically representing this information. Using an Enterprise Service Bus, this ontology is integrated in a semantic middleware to provide context-aware personalized and semantically annotated services, with discovery, composition and orchestration tasks. We show how these services support a real scenario proposed in the Lifewear project

    An ontology-driven architecture for data integration and management in home-based telemonitoring scenarios

    Get PDF
    The shift from traditional medical care to the use of new technology and engineering innovations is nowadays an interesting and growing research area mainly motivated by a growing population with chronic conditions and disabilities. By means of information and communications technologies (ICTs), telemedicine systems offer a good solution for providing medical care at a distance to any person in any place at any time. Although significant contributions have been made in this field in recent decades, telemedicine and in e-health scenarios in general still pose numerous challenges that need to be addressed by researchers in order to take maximum advantage of the benefits that these systems provide and to support their long-term implementation. The goal of this research thesis is to make contributions in the field of home-based telemonitoring scenarios. By periodically collecting patients' clinical data and transferring them to physicians located in remote sites, patient health status supervision and feedback provision is possible. This type of telemedicine system guarantees patient supervision while reducing costs (enabling more autonomous patient care and avoiding hospital over flows). Furthermore, patients' quality of life and empowerment are improved. Specifically, this research investigates how a new architecture based on ontologies can be successfully used to address the main challenges presented in home-based telemonitoring scenarios. The challenges include data integration, personalized care, multi-chronic conditions, clinical and technical management. These are the principal issues presented and discussed in this thesis. The proposed new ontology-based architecture takes into account both practical and conceptual integration issues and the transference of data between the end points of the telemonitoring scenario (i.e, communication and message exchange). The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on web service technologies is proposed to provide practical back-up to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data. This architecture takes advantage of the combination of ontologies, rules, web services and the autonomic computing paradigm. All are well-known technologies and popular solutions applied in the semantic web domain and network management field. A review of these technologies and related works that have made use of them is presented in this thesis in order to understand how they can be combined successfully to provide a solution for telemonitoring scenarios. The design and development of the ontology used in the conceptual layer led to the study of the autonomic computing paradigm and its combination with ontologies. In addition, the OWL (Ontology Web Language) language was studied and selected to express the required knowledge in the ontology while the SPARQL language was examined for its effective use in defining rules. As an outcome of these research tasks, the HOTMES (Home Ontology for Integrated Management in Telemonitoring Scenarios) ontology, presented in this thesis, was developed. The combination of the HOTMES ontology with SPARQL rules to provide a flexible solution for personalising management tasks and adapting the methodology for different management purposes is also discussed. The use of Web Services (WSs) was investigated to support the exchange of information defined in the conceptual layer of the architecture. A generic ontology based solution was designed to integrate data and management procedures in the data and communication layer of the architecture. This is an innovative REST-inspired architecture that allows information contained in an ontology to be exchanged in a generic manner. This layer structure and its communication method provide the approach with scalability and re-usability features. The application of the HOTMES-based architecture has been studied for clinical purposes following three simple methodological stages described in this thesis. Data and management integration for context-aware and personalized monitoring services for patients with chronic conditions in the telemonitoring scenario are thus addressed. In particular, the extension of the HOTMES ontology defines a patient profile. These profiles in combination with individual rules provide clinical guidelines aiming to monitor and evaluate the evolution of the patient's health status evolution. This research implied a multi-disciplinary collaboration where clinicians had an essential role both in the ontology definition and in the validation of the proposed approach. Patient profiles were defined for 16 types of different diseases. Finally, two solutions were explored and compared in this thesis to address the remote technical management of all devices that comprise the telemonitoring scenario. The first solution was based on the HOTMES ontology-based architecture. The second solution was based on the most popular TCP/IP management architecture, SNMP (Simple Network Management Protocol). As a general conclusion, it has been demonstrated that the combination of ontologies, rules, WSs and the autonomic computing paradigm takes advantage of the main benefits that these technologies can offer in terms of knowledge representation, work flow organization, data transference, personalization of services and self-management capabilities. It has been proven that ontologies can be successfully used to provide clear descriptions of managed data (both clinical and technical) and ways of managing such information. This represents a further step towards the possibility of establishing more effective home-based telemonitoring systems and thus improving the remote care of patients with chronic diseases

    Decision support system for in-flight emergency events

    Get PDF
    Medical problems during flight have become an important issue as the number of passengers and miles flown continues to increase. The case of an incident in the plane falls within the scope of the healthcare management in the context of scarce resources associated with isolation of medical actors working in very complex conditions, both in terms of human and material resources. Telemedicine uses information and communication technologies to provide remote and flexible medical services, especially for geographically isolated people. Therefore, telemedicine can generate interesting solutions to the medical problems during flight. Our aim is to build a knowledge-based system able to help health professionals or staff members addressing an urgent situation by given them relevant information, some knowledge, and some judicious advice. In this context, knowledge representation and reasoning can be correctly realized using an ontology that is a representation of concepts, their attributes, and the relationships between them in a particular domain. Particularly, a medical ontology is a formal representation of a vocabulary related to a specific health domain. We propose a new approach to explain the arrangement of different ontological models (task ontology, inference ontology, and domain ontology), which are useful for monitoring remote medical activities and generating required information. These layers of ontologies facilitate the semantic modeling and structuring of health information. The incorporation of existing ontologies [for instance, Systematic Nomenclature Medical Clinical Terms (SNOMED CT)] guarantees improved health concept coverage with experienced knowledge. The proposal comprises conceptual means to generate substantial reasoning and relevant knowledge supporting telemedicine activities during the management of a medical incident and its characterization in the context of air travel. The considered modeling framework is sufficiently generic to cover complex medical situations for isolated and vulnerable populations needing some care and support services

    An Ontology-Based Interpretable Fuzzy Decision Support System for Diabetes Diagnosis

    Get PDF
    Diabetes is a serious chronic disease. The importance of clinical decision support systems (CDSSs) to diagnose diabetes has led to extensive research efforts to improve the accuracy, applicability, interpretability, and interoperability of these systems. However, this problem continues to require optimization. Fuzzy rule-based systems are suitable for the medical domain, where interpretability is a main concern. The medical domain is data-intensive, and using electronic health record data to build the FRBS knowledge base and fuzzy sets is critical. Multiple variables are frequently required to determine a correct and personalized diagnosis, which usually makes it difficult to arrive at accurate and timely decisions. In this paper, we propose and implement a new semantically interpretable FRBS framework for diabetes diagnosis. The framework uses multiple aspects of knowledge-fuzzy inference, ontology reasoning, and a fuzzy analytical hierarchy process (FAHP) to provide a more intuitive and accurate design. First, we build a two-layered hierarchical and interpretable FRBS; then, we improve this by integrating an ontology reasoning process based on SNOMED CT standard ontology. We incorporate FAHP to determine the relative medical importance of each sub-FRBS. The proposed system offers numerous unique and critical improvements regarding the implementation of an accurate, dynamic, semantically intelligent, and interpretable CDSS. The designed system considers the ontology semantic similarity of diabetes complications and symptoms concepts in the fuzzy rules' evaluation process. The framework was tested using a real data set, and the results indicate how the proposed system helps physicians and patients to accurately diagnose diabetes mellitusThis work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science, ICT and Future Planning)-NRF-2017R1A2B2012337)S

    Towards a service-oriented architecture for a mobile assistive system with real-time environmental sensing

    Get PDF
    Dalian Key Lab. of Smart Medical and Healthcare, Computer Science Department, Dalian University, China,With the growing aging population, age-related diseases have increased considerably over the years. In response to these, ambient assistive living (AAL) systems are being developed and are continually evolving to enrich and support independent living. While most researchers investigate robust activity recognition (AR) techniques, this paper focuses on some of the architectural challenges of the AAL systems. This work proposes a system architecture that fuses varying software design patterns and integrates readily available hardware devices to create wireless sensor networks for real-time applications. The system architecture brings together the service-oriented architecture (SOA), semantic web technologies, and other methods to address some of the shortcomings of the preceding system implementations using off-the-shelf and open source components. In order to validate the proposed architecture, a prototype is developed and tested positively to recognize basic user activities in real time. The system provides a base that can be further extended in many areas of AAL systems, including composite AR

    Demonstration of Semantic Web-based Medical Ontologies and Clinical Decision Support Systems

    Get PDF
    Master's thesis in Information- and communication technology IKT590 - University of Agder 2016Konfidensiell til / confidential until 01.01.202
    corecore