4,259 research outputs found

    Characterization of a Multi-User Indoor Positioning System Based on Low Cost Depth Vision (Kinect) for Monitoring Human Activity in a Smart Home

    Get PDF
    An increasing number of systems use indoor positioning for many scenarios such as asset tracking, health care, games, manufacturing, logistics, shopping, and security. Many technologies are available and the use of depth cameras is becoming more and more attractive as this kind of device becomes affordable and easy to handle. This paper contributes to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect). A method is proposed to optimize the calibration of the depth cameras, to describe the multi-camera data fusion and to specify a global positioning projection to maintain the compatibility with outdoor positioning systems. The monitoring of the people trajectories at home is intended for the early detection of a shift in daily activities which highlights disabilities and loss of autonomy. This system is meant to improve homecare health management at home for a better end of life at a sustainable cost for the community

    Spartan Daily, February 11, 1937

    Get PDF
    Volume 25, Issue 79https://scholarworks.sjsu.edu/spartandaily/2564/thumbnail.jp

    Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments

    Get PDF
    In recent years, mobile devices have evolved to support an amalgam of multimedia applications and content. However, the small size of these devices poses a limit the amount of local computing resources. The emergence of Cloud technology has set the ground for an era of task offloading for mobile devices and we are now seeing the deployment of applications that make more extensive use of Cloud processing as a means of augmenting the capabilities of mobiles. Mobile Cloud Computing is the term used to describe the convergence of these technologies towards applications and mechanisms that offload tasks from mobile devices to the Cloud. In order for mobile devices to access Cloud resources and successfully offload tasks there, a solution for constant and reliable connectivity is required. The proliferation of wireless technology ensures that networks are available almost everywhere in an urban environment and mobile devices can stay connected to a network at all times. However, user mobility is often the cause of intermittent connectivity that affects the performance of applications and ultimately degrades the user experience. 5th Generation Networks are introducing mechanisms that enable constant and reliable connectivity through seamless handovers between networks and provide the foundation for a tighter coupling between Cloud resources and mobiles. This convergence of technologies creates new challenges in the areas of traffic management and QoS provisioning. The constant connectivity to and reliance of mobile devices on Cloud resources have the potential of creating large traffic flows between networks. Furthermore, depending on the type of application generating the traffic flow, very strict QoS may be required from the networks as suboptimal performance may severely degrade an application’s functionality. In this thesis, I propose a new service delivery framework, centred on the convergence of Mobile Cloud Computing and 5G networks for the purpose of optimising service delivery in a mobile environment. The framework is used as a guideline for identifying different aspects of service delivery in a mobile environment and for providing a path for future research in this field. The focus of the thesis is placed on the service delivery mechanisms that are responsible for optimising the QoS and managing network traffic. I present a solution for managing traffic through dynamic service localisation according to user mobility and device connectivity. I implement a prototype of the solution in a virtualised environment as a proof of concept and demonstrate the functionality and results gathered from experimentation. Finally, I present a new approach to modelling network performance by taking into account user mobility. The model considers the overall performance of a persistent connection as the mobile node switches between different networks. Results from the model can be used to determine which networks will negatively affect application performance and what impact they will have for the duration of the user's movement. The proposed model is evaluated using an analytical approac

    Learning to Read

    Get PDF
    When I see a book now, I see the cover as a door--the pages, long hallways full of new visions--and the back cover, an unlocked backdoor; a place for me to enter over and over again, probing the language, the concepts, and the author’s mind as well as my own. Samier Mansur is pursuing an International Affairs major with a minor in economics. I wrote this essay, he explains, in order to convey a sense of fulfillment in the sense that I have finally begun to understand the purpose of reading and writing. Sure, we have been told since childhood why we go to school, but somewhere along the line the whole process becomes so mechanized to the point where the student detaches him/herself from the experience altogether. This is my story of finding the meaning behind reading and my discovery of a world which I once believed existed only in rhetoric

    How\u27s My Network - Incentives and Impediments of Home Network Measurements

    Get PDF
    Gathering meaningful information from Home Networking (HN) environments has presented researchers with measurement strategy challenges. A measurement platform is typically designed around the process of gathering data from a range of devices or usage statistics in a network that are specifically behind the HN firewall. HN studies require a fine balance between incentives and impediments to promote usage and minimize efforts for user participation with the focus on gathering robust datasets and results. In this dissertation we explore how to gather data from the HN Ecosystem (e.g. devices, apps, permissions, configurations) and feedback from HN users across a multitude of HN infrastructures, leveraging low impediment and low/high incentive methods to entice user participation. We look to understand the trade-offs of using a variety of approach types (e.g. Java Applet, Mobile app, survey) for data collections, user preferences, and how HN users react and make changes to the HN environment when presented with privacy/security concerns, norms of comparisons (e.g. comparisons to the local environment and to other HNs) and other HN results. We view that the HN Ecosystem is more than just “the network” as it also includes devices and apps within the HN. We have broken this dissertation down into the following three pillars of work to understand incentives and impediments of user participation and data collections. These pillars include: 1) preliminary work, as part of the How\u27s My Network (HMN) measurement platform, a deployed signed Java applet that provided a user-centered network measurement platform to minimize user impediments for data collection, 2) a HN user survey on preference, comfort, and usability of HNs to understand incentives, and 3) the creation and deployment of a multi-faceted How\u27s My Network Mobile app tool to gather and compare attributes and feedback with high incentives for user participation; as part of this flow we also include related approaches and background work. The HMN Java applet work demonstrated the viability of using a Web browser to obtain network performance data from HNs via a user-centric network measurement platform that minimizes impediments for user participation. The HMN HN survey work found that users prefer to leverage a Mobile app for HN data collections, and can be incentivized to participate in a HN study by providing attributes and characteristics of the HN Ecosystem. The HMN Mobile app was found to provide high incentives, with minimal impediments, for participation with focus on user Privacy and Security concerns. The HMN Mobile app work found that 84\% of users reported a change in perception of privacy and security, 32\% of users uninstalled apps, and 24\% revoked permissions in their HN. As a by-product of this work we found it was possible to gather sensitive information such as previously attached networks, installed apps and devices on the network. This information exposure to any installed app with minimal or no granted permissions is a potential privacy concern
    • …
    corecore